47 resultados para General Linear Methods
em Université de Montréal, Canada
Resumo:
Essai cinique randomisé
Resumo:
We propose methods for testing hypotheses of non-causality at various horizons, as defined in Dufour and Renault (1998, Econometrica). We study in detail the case of VAR models and we propose linear methods based on running vector autoregressions at different horizons. While the hypotheses considered are nonlinear, the proposed methods only require linear regression techniques as well as standard Gaussian asymptotic distributional theory. Bootstrap procedures are also considered. For the case of integrated processes, we propose extended regression methods that avoid nonstandard asymptotics. The methods are applied to a VAR model of the U.S. economy.
Resumo:
Le but de cette thèse est d'étudier les corrélats comportementaux et neuronaux du transfert inter-linguistique (TIL) dans l'apprentissage d’une langue seconde (L2). Compte tenu de nos connaissances sur l'influence de la distance linguistique sur le TIL (Paradis, 1987, 2004; Odlin, 1989, 2004, 2005; Gollan, 2005; Ringbom, 2007), nous avons examiné l'effet de facilitation de la similarité phonologique à l’aide de la résonance magnétique fonctionnelle entre des langues linguistiquement proches (espagnol-français) et des langues linguistiquement éloignées (persan-français). L'étude I rapporte les résultats obtenus pour des langues linguistiquement proches (espagnol-français), alors que l'étude II porte sur des langues linguistiquement éloignées (persan-français). Puis, les changements de connectivité fonctionnelle dans le réseau langagier (Price, 2010) et dans le réseau de contrôle supplémentaire impliqué dans le traitement d’une langue seconde (Abutalebi & Green, 2007) lors de l’apprentissage d’une langue linguistiquement éloignée (persan-français) sont rapportés dans l’étude III. Les résultats des analyses d’IRMF suivant le modèle linéaire général chez les bilingues de langues linguistiquement proches (français-espagnol) montrent que le traitement des mots phonologiquement similaires dans les deux langues (cognates et clangs) compte sur un réseau neuronal partagé par la langue maternelle (L1) et la L2, tandis que le traitement des mots phonologiquement éloignés (non-clang-non-cognates) active des structures impliquées dans le traitement de la mémoire de travail et d'attention. Toutefois, chez les personnes bilingues de L1-L2 linguistiquement éloignées (français-persan), même les mots phonologiquement similaires à travers les langues (cognates et clangs) activent des régions connues pour être impliquées dans l'attention et le contrôle cognitif. Par ailleurs, les mots phonologiquement éloignés (non-clang-non-cognates) activent des régions usuellement associées à la mémoire de travail et aux fonctions exécutives. Ainsi, le facteur de distance inter-linguistique entre L1 et L2 module la charge cognitive sur la base du degré de similarité phonologiques entres les items en L1 et L2. Des structures soutenant les processus impliqués dans le traitement exécutif sont recrutées afin de compenser pour des demandes cognitives. Lorsque la compétence linguistique en L2 augmente et que les tâches linguistiques exigent ainsi moins d’effort, la demande pour les ressources cognitives diminue. Tel que déjà rapporté (Majerus, et al, 2008; Prat, et al, 2007; Veroude, et al, 2010; Dodel, et al, 2005; Coynel, et al ., 2009), les résultats des analyses de connectivité fonctionnelle montrent qu’après l’entraînement la valeur d'intégration (connectivité fonctionnelle) diminue puisqu’il y a moins de circulation du flux d'information. Les résultats de cette recherche contribuent à une meilleure compréhension des aspects neurocognitifs et de plasticité cérébrale du TIL ainsi que l'impact de la distance linguistique dans l'apprentissage des langues. Ces résultats ont des implications dans les stratégies d'apprentissage d’une L2, les méthodes d’enseignement d’une L2 ainsi que le développement d'approches thérapeutiques chez des patients bilingues qui souffrent de troubles langagiers.
Resumo:
La scoliose idiopathique de l’adolescent est une déformation 3D du rachis. La littérature comporte une multitude d’études sur la prédiction de l’évolution et l’identification de facteurs de risque de progression. Pour l’instant les facteurs de risque établis sont l’amplitude de la déformation, la maturité squelettique et le type de courbure. Plusieurs autres champs ont été explorés comme les aspects génétiques, biochimiques, mécaniques, posturaux et topographiques, sans vraiment apporter beaucoup de précision à la prédiction de l’évolution. L’avancement de la technologie permet maintenant de générer des reconstructions 3D du rachis à l’aide des radiographies standard et d’obtenir des mesures de paramètres 3D. L’intégration de ces paramètres 3D dans un modèle prédictif représente une avenue encore inexplorée qui est tout à fait logique dans le contexte de cette déformation 3D du rachis. L’objectif général de cette thèse est de développer un modèle de prédiction de l’angle de Cobb à maturité squelettique à partir de l’information disponible au moment de la première visite, soit l’angle de Cobb initial, le type de courbure, l’âge osseux et des paramètres 3D du rachis. Dans une première étude, un indice d’âge osseux a été développé basé sur l’ossification de l’apophyse iliaque et sur le statut du cartilage triradié. Cet indice comporte 3 stades et le second stade, qui est défini par un cartilage triradié fermé avec maximum 1/3 d’ossification de l’apophyse iliaque, représente le moment pendant lequel la progression de la scoliose idiopathique de l’adolescent est la plus rapide. Une seconde étude rétrospective a permis de mettre en évidence le potentiel des paramètres 3D pour améliorer la prédiction de l’évolution. Il a été démontré qu’à la première visite il existe des différences pour 5 paramètres 3D du rachis entre un groupe de patients qui sera éventuellement opéré et un groupe qui ne progressera pas. Ces paramètres sont : la moyenne da la cunéiformisation 3D des disques apicaux, la rotation intervertébrale à la jonction inférieure de la courbure, la torsion, le ratio hauteur/largeur du corps vertébral de T6 et de la colonne complète. Les deux dernières études sont basées sur une cohorte prospective de 133 patients avec une scoliose idiopathique de l’adolescent suivi dès leur première visite à l’hôpital jusqu’à maturité squelettique. Une première étude a permis de mettre en évidence les différences morphologiques à la première visite entre les patients ayant progresser de plus ou moins de 6°. Des différences ont été mise en évidence pour la cyphose, l’angle de plan de déformation maximal, la rotation ntervertébrale l’apex, la torsion et plusieurs paramètres de «slenderness». Ensuite une seconde étude a permis de développer un modèle prédictif basé sur un modèle linéaire général en incluant l’indice d’âge osseux développé dans la première étude, le type de courbure, l’amplitude de l’angle de Cobb à la première visite, l’angle de déformation du plan maximale, la cunéiformisation 3D des disques T3-T4, T8-T9, T11-T12 et la somme des cunéiformisation 3D de tous les disques thoraciques et lombaires. Le coefficient de détermination multiple pour cette modélisation est de 0.715. Le modèle prédictif développé renforce l’importance de considérer la scoliose idiopathique dans les trois dimensions et il permettra d’optimiser la prédiction de l’évolution au moment de la première visite.
Resumo:
Posterior epilepsies are relatively rare, mainly suspected clinically by the presence of visual auras. Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive imaging technique that has the potential to monitor hemodynamic changes during epileptic activity. Combined with electroencephalography (EEG), 9 patients with posterior epilepsies were recorded using EEG-fNIRS with large sampling (19 EEG electrodes and over 100 fNIRS channels). Spikes and seizures were carefully marked on EEG traces, and convolved with a standard hemodynamic response function for general linear model (GLM) analysis. GLM results for seizures (in 3 patients) and spikes (7 patients) were broadly sensitive to the epileptic focus in 7/9 patients, and specific in 5/9 patients with fNIRS deoxyhemoglobin responses lateralized to the correct lobe, and to plausible locations within the occipital or parietal lobes. This work provides evidence that EEG-fNIRS is a sensitive technique for monitoring posterior epileptic activity.
Resumo:
In the literature on tests of normality, much concern has been expressed over the problems associated with residual-based procedures. Indeed, the specialized tables of critical points which are needed to perform the tests have been derived for the location-scale model; hence reliance on available significance points in the context of regression models may cause size distortions. We propose a general solution to the problem of controlling the size normality tests for the disturbances of standard linear regression, which is based on using the technique of Monte Carlo tests.
Resumo:
In the context of multivariate regression (MLR) and seemingly unrelated regressions (SURE) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. in this paper, we propose finite-and large-sample likelihood-based test procedures for possibly non-linear hypotheses on the coefficients of MLR and SURE systems.
Resumo:
In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.
Resumo:
It is well known that standard asymptotic theory is not valid or is extremely unreliable in models with identification problems or weak instruments [Dufour (1997, Econometrica), Staiger and Stock (1997, Econometrica), Wang and Zivot (1998, Econometrica), Stock and Wright (2000, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. One possible way out consists here in using a variant of the Anderson-Rubin (1949, Ann. Math. Stat.) procedure. The latter, however, allows one to build exact tests and confidence sets only for the full vector of the coefficients of the endogenous explanatory variables in a structural equation, which in general does not allow for individual coefficients. This problem may in principle be overcome by using projection techniques [Dufour (1997, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. AR-types are emphasized because they are robust to both weak instruments and instrument exclusion. However, these techniques can be implemented only by using costly numerical techniques. In this paper, we provide a complete analytic solution to the problem of building projection-based confidence sets from Anderson-Rubin-type confidence sets. The latter involves the geometric properties of “quadrics” and can be viewed as an extension of usual confidence intervals and ellipsoids. Only least squares techniques are required for building the confidence intervals. We also study by simulation how “conservative” projection-based confidence sets are. Finally, we illustrate the methods proposed by applying them to three different examples: the relationship between trade and growth in a cross-section of countries, returns to education, and a study of production functions in the U.S. economy.
Resumo:
This paper employs the one-sector Real Business Cycle model as a testing ground for four different procedures to estimate Dynamic Stochastic General Equilibrium (DSGE) models. The procedures are: 1 ) Maximum Likelihood, with and without measurement errors and incorporating Bayesian priors, 2) Generalized Method of Moments, 3) Simulated Method of Moments, and 4) Indirect Inference. Monte Carlo analysis indicates that all procedures deliver reasonably good estimates under the null hypothesis. However, there are substantial differences in statistical and computational efficiency in the small samples currently available to estimate DSGE models. GMM and SMM appear to be more robust to misspecification than the alternative procedures. The implications of the stochastic singularity of DSGE models for each estimation method are fully discussed.
Resumo:
In this paper, we study the asymptotic distribution of a simple two-stage (Hannan-Rissanen-type) linear estimator for stationary invertible vector autoregressive moving average (VARMA) models in the echelon form representation. General conditions for consistency and asymptotic normality are given. A consistent estimator of the asymptotic covariance matrix of the estimator is also provided, so that tests and confidence intervals can easily be constructed.
Resumo:
We derive conditions that must be satisfied by the primitives of the problem in order for an equilibrium in linear Markov strategies to exist in some common property natural resource differential games. These conditions impose restrictions on the admissible form of the natural growth function, given a benefit function, or on the admissible form of the benefit function, given a natural growth function.
Resumo:
This paper studies seemingly unrelated linear models with integrated regressors and stationary errors. By adding leads and lags of the first differences of the regressors and estimating this augmented dynamic regression model by feasible generalized least squares using the long-run covariance matrix, we obtain an efficient estimator of the cointegrating vector that has a limiting mixed normal distribution. Simulation results suggest that this new estimator compares favorably with others already proposed in the literature. We apply these new estimators to the testing of purchasing power parity (PPP) among the G-7 countries. The test based on the efficient estimates rejects the PPP hypothesis for most countries.
Resumo:
In the context of multivariate linear regression (MLR) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. In this paper, we propose a general method for constructing exact tests of possibly nonlinear hypotheses on the coefficients of MLR systems. For the case of uniform linear hypotheses, we present exact distributional invariance results concerning several standard test criteria. These include Wilks' likelihood ratio (LR) criterion as well as trace and maximum root criteria. The normality assumption is not necessary for most of the results to hold. Implications for inference are two-fold. First, invariance to nuisance parameters entails that the technique of Monte Carlo tests can be applied on all these statistics to obtain exact tests of uniform linear hypotheses. Second, the invariance property of the latter statistic is exploited to derive general nuisance-parameter-free bounds on the distribution of the LR statistic for arbitrary hypotheses. Even though it may be difficult to compute these bounds analytically, they can easily be simulated, hence yielding exact bounds Monte Carlo tests. Illustrative simulation experiments show that the bounds are sufficiently tight to provide conclusive results with a high probability. Our findings illustrate the value of the bounds as a tool to be used in conjunction with more traditional simulation-based test methods (e.g., the parametric bootstrap) which may be applied when the bounds are not conclusive.