71 resultados para Intégralité quantique
Resumo:
Nous étudions la recombinaison radiative des porteurs de charges photogénérés dans les puits quantiques InGaN/GaN étroits (2 nm). Nous caractérisons le comportement de la photoluminescence face aux différentes conditions expérimentales telles la température, l'énergie et la puissance de l'excitation et la tension électrique appliquée. Ces mesures montrent que l'émission provient d'états localisés. De plus, les champs électriques, présents nativement dans ces matériaux, n'ont pas une influence dominante sur la recombinaison des porteurs. Nous avons montré que le spectre d'émission se modifie significativement et subitement lorsque la puissance de l'excitation passe sous un certain seuil. L'émission possède donc deux ``phases'' dont nous avons déterminé le diagramme. La phase adoptée dépend à la fois de la puissance, de la température et de la tension électrique appliquée. Nous proposons que la phase à basse puissance soit associée à un état électriquement chargé dans le matériau. Ensuite, nous avons caractérisé la dynamique temporelle de notre échantillon. Le taux de répétition de l'excitation a une influence importante sur la dynamique mesurée. Nous concluons qu'elle ne suit pas une exponentielle étirée comme on le pensait précédemment. Elle est exponentielle à court temps et suit une loi de puissance à grand temps. Ces deux régimes sont lié à un seul et même mécanisme de recombinaison. Nous avons développé un modèle de recombinaison à trois niveaux afin d'expliquer le comportement temporel de la luminescence. Ce modèle suppose l'existence de centres de localisation où les porteurs peuvent se piéger, indépendamment ou non. L'électron peut donc se trouver sur un même centre que le trou ou sur n'importe quel autre centre. En supposant le transfert des porteurs entre centres par saut tunnel on détermine, en fonction de la distribution spatiale des centres, la dynamique de recombinaison. Ce modèle indique que la recombinaison dans les puits InGaN/GaN minces est liée à des agglomérats de centre de localisation.
Resumo:
Une première partie de ce mémoire portera sur l’analyse des états fondamentaux ma- gnétiques de deux composés isolants et magnétiquement frustrés SrDy2O4 et SrHo2O4. Une étude de la chaleur spécifique à basse température sous l’effet de champs magné- tiques de ces échantillons a été menée afin de détecter la présence de transitions de phases. L’utilisation d’un composé isotructurel non magnétique, le SrLu2O4, a permis l’isolement de la composante magnétique à la chaleur spécifique. Les comportements observés sont non conformes avec les transitions magnétiques conventionnelles. De plus, le calcul de l’entropie magnétique ne montre qu’un recouvrement partiel de l’entropie associée à un système d’ions magnétiques. En second lieu, une analyse des oscillations quantiques de Haas-van Alphen a été effectuée dans le LuCoIn5, composé apparenté au supraconducteur à fermions lourds CeCoIn5. Les résultats obtenus montrent une topologie de la surface de Fermi très différente comparativement aux CeCoIn5 et LaCoIn5, ayant un comportement beaucoup plus tridimensionnel sans les cylindres caractéristiques présents chez les autres membres de cette famille. Finalement, le montage d’un système de détection PIXE a permis l’analyse nucléaire d’échantillons afin de déterminer la concentration de chacun des éléments les constituant. L’analyse a été effectuée sur une série d’échantillons YbxCe1−xCoIn5 dont le changement de concentration a des effets importants sur les propriétés du système.
Resumo:
Dans la première partie, nous présentons les résultats de l'étude du supraconducteur sans inversion de symétrie LaRhSi3 par spectroscopie muonique. En champ nul, nous n'avons pas détecté de champ interne. Ceci indique que la fonction d'onde de l'état supraconducteur n'est pas dominée par l'état triplet. Les mesures en champ transverse de 35G présentent une transition en accord avec la transition de phase attendue sous le champ critique Hc1. Nous avons répété ces mesures pour un champ entre Hc1 et Hc2, 150G. Le spectre obtenu pour ces mesures conserve l'asymétrie et relaxe rapidement à basse température tel que prédit pour un supraconducteur dans la phase d'Abrikosov. Néanmoins, les relaxations produites par ce balayage en température présentent une transition à près de 2 fois la température critique attendue. Dans la deuxième partie de ce mémoire, nous donnons l'interprétation des résultats de la diffraction neutronique inélastique par l'étude des champs électriques cristallins. Ces mesures ont été effectuées sur des aimants frustrés SrHo2O4 et SrDy2O4 sous la forme de poudre. L'étude des niveaux produits par les champs cristallins par la méthode des opérateurs de Stevens indique une perte du moment cinétique dans les deux matériaux. Pour le SrDy2O4, l'état fondamental serait constitué de quatre états dégénérés quasi accidentellement qui portent un moment magnétique total non-nul. Toute fois, nos mesures de susceptibilité magnétique ne montrent aucun ordre au-dessus de 50mK. Pour le SrHo2O4, le fondamental est formé d'une paire accidentelle. Nous obtenons un moment magnétique de 6.94(8)$\mu_B$ ce qui s'accorde avec les données expérimentales.
Resumo:
Soit (M,ω) un variété symplectique fermée et connexe.On considère des sous-variétés lagrangiennes α : L → (M,ω). Si α est monotone, c.- à-d. s’il existe η > 0 tel que ημ = ω, Paul Biran et Octav Conea ont défini une version relative de l’homologie quantique. Dans ce contexte ils ont déformé l’opérateur de bord du complexe de Morse ainsi que le produit d’intersection à l’aide de disques pseudo-holomorphes. On note (QH(L), ∗), l’homologie quantique de L munie du produit quantique. Le principal objectif de cette dissertation est de généraliser leur construction à un classe plus large d’espaces. Plus précisément on considère soit des sous-variétés presque monotone, c.-à-d. α est C1-proche d’un plongement lagrangian monotone ; soit les fibres toriques de variétés toriques Fano. Dans ces cas non nécessairement monotones, QH(L) va dépendre de certains choix, mais cela sera irrelevant pour les applications présentées ici. Dans le cas presque monotone, on s’intéresse principalement à des questions de déplaçabilité, d’uniréglage et d’estimation d’énergie de difféomorphismes hamiltoniens. Enfin nous terminons par une application combinant les deux approches, concernant la dynamique d’un hamiltonien déplaçant toutes les fibres toriques non-monotones dans CPn.
Resumo:
Travail réalisé en cotutelle avec l'université Paris-Diderot et le Commissariat à l'Energie Atomique sous la direction de John Harnad et Bertrand Eynard.
Resumo:
Vers la fin du 19ème siècle, le moine et réformateur hindou Swami Vivekananda affirma que la science moderne convergeait vers l'Advaita Vedanta, un important courant philosophique et religieux de l'hindouisme. Au cours des décennies suivantes, suite aux apports scientifiques révolutionnaires de la théorie de la relativité d'Einstein et de la physique quantique, un nombre croissant d'auteurs soutenaient que d'importants "parallèles" pouvaient être tracés entre l'Advaita Vedanta et la physique moderne. Encore aujourd'hui, de tels rapprochements sont faits, particulièrement en relation avec la physique quantique. Cette thèse examine de manière critique ces rapprochements à travers l'étude comparative détaillée de deux concepts: le concept d'akasa dans l'Advaita Vedanta et celui de vide en physique quantique. L'énoncé examiné est celui selon lequel ces deux concepts pointeraient vers une même réalité: un substratum omniprésent et subtil duquel émergent et auquel retournent ultimement les divers constituants de l'univers. Sur la base de cette étude comparative, la thèse argumente que des comparaisons de nature conceptuelle favorisent rarement la mise en place d'un véritable dialogue entre l'Advaita Vedanta et la physique moderne. Une autre voie d'approche serait de prendre en considération les limites épistémologiques respectivement rencontrées par ces disciplines dans leur approche du "réel-en-soi" ou de la "réalité ultime." Une attention particulière sera portée sur l'épistémologie et le problème de la nature de la réalité dans l'Advaita Vedanta, ainsi que sur le réalisme scientifique et les implications philosophiques de la non-séparabilité en physique quantique.
Resumo:
L'approximation adiabatique en mécanique quantique stipule que si un système quantique évolue assez lentement, alors il demeurera dans le même état propre. Récemment, une faille dans l'application de l'approximation adiabatique a été découverte. Les limites du théorème seront expliquées lors de sa dérivation. Ce mémoire à pour but d'optimiser la probabilité de se maintenir dans le même état propre connaissant le système initial, final et le temps d'évolution total. Cette contrainte sur le temps empêche le système d'être assez lent pour être adiabatique. Pour solutionner ce problème, une méthode variationnelle est utilisée. Cette méthode suppose connaître l'évolution optimale et y ajoute une petite variation. Par après, nous insérons cette variation dans l'équation de la probabilité d'être adiabatique et développons en série. Puisque la série est développée autour d'un optimum, le terme d'ordre un doit nécessairement être nul. Ceci devrait nous donner un critère sur l'évolution la plus adiabatique possible et permettre de la déterminer. Les systèmes quantiques dépendants du temps sont très complexes. Ainsi, nous commencerons par les systèmes ayant des énergies propres indépendantes du temps. Puis, les systèmes sans contrainte et avec des fonctions d'onde initiale et finale libres seront étudiés.
Resumo:
Dans ce mémoire, je démontre que la distribution de probabilités de l'état quantique Greenberger-Horne-Zeilinger (GHZ) sous l'action locale de mesures de von Neumann indépendantes sur chaque qubit suit une distribution qui est une combinaison convexe de deux distributions. Les coefficients de la combinaison sont reliés aux parties équatoriales des mesures et les distributions associées à ces coefficients sont reliées aux parties réelles des mesures. Une application possible du résultat est qu'il permet de scinder en deux la simulation de l'état GHZ. Simuler, en pire cas ou en moyenne, un état quantique comme GHZ avec des ressources aléatoires, partagées ou privées, et des ressources classiques de communication, ou même des ressources fantaisistes comme les boîtes non locales, est un problème important en complexité de la communication quantique. On peut penser à ce problème de simulation comme un problème où plusieurs personnes obtiennent chacune une mesure de von Neumann à appliquer sur le sous-système de l'état GHZ qu'il partage avec les autres personnes. Chaque personne ne connaît que les données décrivant sa mesure et d'aucune façon une personne ne connaît les données décrivant la mesure d'une autre personne. Chaque personne obtient un résultat aléatoire classique. La distribution conjointe de ces résultats aléatoires classiques suit la distribution de probabilités trouvée dans ce mémoire. Le but est de simuler classiquement la distribution de probabilités de l'état GHZ. Mon résultat indique une marche à suivre qui consiste d'abord à simuler les parties équatoriales des mesures pour pouvoir ensuite savoir laquelle des distributions associées aux parties réelles des mesures il faut simuler. D'autres chercheurs ont trouvé comment simuler les parties équatoriales des mesures de von Neumann avec de la communication classique dans le cas de 3 personnes, mais la simulation des parties réelles résiste encore et toujours.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Ce mémoire est une poursuite de l’étude de la superintégrabilité classique et quantique dans un espace euclidien de dimension deux avec une intégrale du mouvement d’ordre trois. Il est constitué d’un article. Puisque les classifications de tous les Hamiltoniens séparables en coordonnées cartésiennes et polaires sont déjà complétées, nous apportons à ce tableau l’étude de ces systèmes séparables en coordonnées paraboliques. Premièrement, nous dérivons les équations déterminantes d’un système en coordonnées paraboliques et ensuite nous résolvons les équations obtenues afin de trouver les intégrales d’ordre trois pour un potentiel qui permet la séparation en coordonnées paraboliques. Finalement, nous démontrons que toutes les intégrales d’ordre trois pour les potentiels séparables en coordonnées paraboliques dans l’espace euclidien de dimension deux sont réductibles. Dans la conclusion de l’article nous analysons les différences entre les potentiels séparables en coordonnées cartésiennes et polaires d’un côté et en coordonnées paraboliques d’une autre côté. Mots clés: intégrabilité, superintégrabilité, mécanique classique, mécanique quantique, Hamiltonien, séparation de variable, commutation.
Resumo:
L'intégralité de ce projet a été réalisé à l'aide de logiciels sous licence libre.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal