34 resultados para Expectations hypothesis of term struscture of interest rates


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les questions abordées dans les deux premiers articles de ma thèse cherchent à comprendre les facteurs économiques qui affectent la structure à terme des taux d'intérêt et la prime de risque. Je construis des modèles non linéaires d'équilibre général en y intégrant des obligations de différentes échéances. Spécifiquement, le premier article a pour objectif de comprendre la relation entre les facteurs macroéconomiques et le niveau de prime de risque dans un cadre Néo-keynésien d'équilibre général avec incertitude. L'incertitude dans le modèle provient de trois sources : les chocs de productivité, les chocs monétaires et les chocs de préférences. Le modèle comporte deux types de rigidités réelles à savoir la formation des habitudes dans les préférences et les coûts d'ajustement du stock de capital. Le modèle est résolu par la méthode des perturbations à l'ordre deux et calibré à l'économie américaine. Puisque la prime de risque est par nature une compensation pour le risque, l'approximation d'ordre deux implique que la prime de risque est une combinaison linéaire des volatilités des trois chocs. Les résultats montrent qu'avec les paramètres calibrés, les chocs réels (productivité et préférences) jouent un rôle plus important dans la détermination du niveau de la prime de risque relativement aux chocs monétaires. Je montre que contrairement aux travaux précédents (dans lesquels le capital de production est fixe), l'effet du paramètre de la formation des habitudes sur la prime de risque dépend du degré des coûts d'ajustement du capital. Lorsque les coûts d'ajustement du capital sont élevés au point que le stock de capital est fixe à l'équilibre, une augmentation du paramètre de formation des habitudes entraine une augmentation de la prime de risque. Par contre, lorsque les agents peuvent librement ajuster le stock de capital sans coûts, l'effet du paramètre de la formation des habitudes sur la prime de risque est négligeable. Ce résultat s'explique par le fait que lorsque le stock de capital peut être ajusté sans coûts, cela ouvre un canal additionnel de lissage de consommation pour les agents. Par conséquent, l'effet de la formation des habitudes sur la prime de risque est amoindri. En outre, les résultats montrent que la façon dont la banque centrale conduit sa politique monétaire a un effet sur la prime de risque. Plus la banque centrale est agressive vis-à-vis de l'inflation, plus la prime de risque diminue et vice versa. Cela est due au fait que lorsque la banque centrale combat l'inflation cela entraine une baisse de la variance de l'inflation. Par suite, la prime de risque due au risque d'inflation diminue. Dans le deuxième article, je fais une extension du premier article en utilisant des préférences récursives de type Epstein -- Zin et en permettant aux volatilités conditionnelles des chocs de varier avec le temps. L'emploi de ce cadre est motivé par deux raisons. D'abord des études récentes (Doh, 2010, Rudebusch and Swanson, 2012) ont montré que ces préférences sont appropriées pour l'analyse du prix des actifs dans les modèles d'équilibre général. Ensuite, l'hétéroscedasticité est une caractéristique courante des données économiques et financières. Cela implique que contrairement au premier article, l'incertitude varie dans le temps. Le cadre dans cet article est donc plus général et plus réaliste que celui du premier article. L'objectif principal de cet article est d'examiner l'impact des chocs de volatilités conditionnelles sur le niveau et la dynamique des taux d'intérêt et de la prime de risque. Puisque la prime de risque est constante a l'approximation d'ordre deux, le modèle est résolu par la méthode des perturbations avec une approximation d'ordre trois. Ainsi on obtient une prime de risque qui varie dans le temps. L'avantage d'introduire des chocs de volatilités conditionnelles est que cela induit des variables d'état supplémentaires qui apportent une contribution additionnelle à la dynamique de la prime de risque. Je montre que l'approximation d'ordre trois implique que les primes de risque ont une représentation de type ARCH-M (Autoregressive Conditional Heteroscedasticty in Mean) comme celui introduit par Engle, Lilien et Robins (1987). La différence est que dans ce modèle les paramètres sont structurels et les volatilités sont des volatilités conditionnelles de chocs économiques et non celles des variables elles-mêmes. J'estime les paramètres du modèle par la méthode des moments simulés (SMM) en utilisant des données de l'économie américaine. Les résultats de l'estimation montrent qu'il y a une évidence de volatilité stochastique dans les trois chocs. De plus, la contribution des volatilités conditionnelles des chocs au niveau et à la dynamique de la prime de risque est significative. En particulier, les effets des volatilités conditionnelles des chocs de productivité et de préférences sont significatifs. La volatilité conditionnelle du choc de productivité contribue positivement aux moyennes et aux écart-types des primes de risque. Ces contributions varient avec la maturité des bonds. La volatilité conditionnelle du choc de préférences quant à elle contribue négativement aux moyennes et positivement aux variances des primes de risque. Quant au choc de volatilité de la politique monétaire, son impact sur les primes de risque est négligeable. Le troisième article (coécrit avec Eric Schaling, Alain Kabundi, révisé et resoumis au journal of Economic Modelling) traite de l'hétérogénéité dans la formation des attentes d'inflation de divers groupes économiques et de leur impact sur la politique monétaire en Afrique du sud. La question principale est d'examiner si différents groupes d'agents économiques forment leurs attentes d'inflation de la même façon et s'ils perçoivent de la même façon la politique monétaire de la banque centrale (South African Reserve Bank). Ainsi on spécifie un modèle de prédiction d'inflation qui nous permet de tester l'arrimage des attentes d'inflation à la bande d'inflation cible (3% - 6%) de la banque centrale. Les données utilisées sont des données d'enquête réalisée par la banque centrale auprès de trois groupes d'agents : les analystes financiers, les firmes et les syndicats. On exploite donc la structure de panel des données pour tester l'hétérogénéité dans les attentes d'inflation et déduire leur perception de la politique monétaire. Les résultats montrent qu'il y a évidence d'hétérogénéité dans la manière dont les différents groupes forment leurs attentes. Les attentes des analystes financiers sont arrimées à la bande d'inflation cible alors que celles des firmes et des syndicats ne sont pas arrimées. En effet, les firmes et les syndicats accordent un poids significatif à l'inflation retardée d'une période et leurs prédictions varient avec l'inflation réalisée (retardée). Ce qui dénote un manque de crédibilité parfaite de la banque centrale au vu de ces agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistical evidence is reported that even outside disaster periods, agents face negative consumption skewness, as well as positive inflation skewness. Quantitative implications of skewness risk for nominal loan contracts in a pure exchange economy are derived. Key modeling assumptions are Epstein-Zin preferences for traders and asymmetric distributions for consumption and inflation innovations. The model is solved using a third-order perturbation and estimated by the simulated method of moments. Results show that skewness risk accounts for 6 to 7 percent of the risk premia depending on the bond maturity.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La dernière décennie a connu un intérêt croissant pour les problèmes posés par les variables instrumentales faibles dans la littérature économétrique, câest-à-dire les situations où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter. En effet, il est bien connu que lorsque les instruments sont faibles, les distributions des statistiques de Student, de Wald, du ratio de vraisemblance et du multiplicateur de Lagrange ne sont plus standard et dépendent souvent de paramètres de nuisance. Plusieurs études empiriques portant notamment sur les modèles de rendements à lâéducation [Angrist et Krueger (1991, 1995), Angrist et al. (1999), Bound et al. (1995), Dufour et Taamouti (2007)] et dâévaluation des actifs financiers (C-CAPM) [Hansen et Singleton (1982,1983), Stock et Wright (2000)], où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter, ont montré que lâutilisation de ces statistiques conduit souvent à des résultats peu fiables. Un remède à ce problème est lâutilisation de tests robustes à lâidentification [Anderson et Rubin (1949), Moreira (2002), Kleibergen (2003), Dufour et Taamouti (2007)]. Cependant, il nâexiste aucune littérature économétrique sur la qualité des procédures robustes à lâidentification lorsque les instruments disponibles sont endogènes ou à la fois endogènes et faibles. Cela soulève la question de savoir ce qui arrive aux procédures dâinférence robustes à lâidentification lorsque certaines variables instrumentales supposées exogènes ne le sont pas effectivement. Plus précisément, quâarrive-t-il si une variable instrumentale invalide est ajoutée à un ensemble dâinstruments valides? Ces procédures se comportent-elles différemment? Et si lâendogénéité des variables instrumentales pose des difficultés majeures à lâinférence statistique, peut-on proposer des procédures de tests qui sélectionnent les instruments lorsquâils sont à la fois forts et valides? Est-il possible de proposer les proédures de sélection dâinstruments qui demeurent valides même en présence dâidentification faible? Cette thèse se focalise sur les modèles structurels (modèles à équations simultanées) et apporte des réponses à ces questions à travers quatre essais. Le premier essai est publié dans Journal of Statistical Planning and Inference 138 (2008) 2649 â 2661. Dans cet essai, nous analysons les effets de lâendogénéité des instruments sur deux statistiques de test robustes à lâidentification: la statistique dâAnderson et Rubin (AR, 1949) et la statistique de Kleibergen (K, 2003), avec ou sans instruments faibles. Dâabord, lorsque le paramètre qui contrôle lâendogénéité des instruments est fixe (ne dépend pas de la taille de lâéchantillon), nous montrons que toutes ces procédures sont en général convergentes contre la présence dâinstruments invalides (câest-à-dire détectent la présence dâinstruments invalides) indépendamment de leur qualité (forts ou faibles). Nous décrivons aussi des cas où cette convergence peut ne pas tenir, mais la distribution asymptotique est modifiée dâune manière qui pourrait conduire à des distorsions de niveau même pour de grands échantillons. Ceci inclut, en particulier, les cas où lâestimateur des double moindres carrés demeure convergent, mais les tests sont asymptotiquement invalides. Ensuite, lorsque les instruments sont localement exogènes (câest-à-dire le paramètre dâendogénéité converge vers zéro lorsque la taille de lâéchantillon augmente), nous montrons que ces tests convergent vers des distributions chi-carré non centrées, que les instruments soient forts ou faibles. Nous caractérisons aussi les situations où le paramètre de non centralité est nul et la distribution asymptotique des statistiques demeure la même que dans le cas des instruments valides (malgré la présence des instruments invalides). Le deuxième essai étudie lâimpact des instruments faibles sur les tests de spécification du type Durbin-Wu-Hausman (DWH) ainsi que le test de Revankar et Hartley (1973). Nous proposons une analyse en petit et grand échantillon de la distribution de ces tests sous lâhypothèse nulle (niveau) et lâalternative (puissance), incluant les cas où lâidentification est déficiente ou faible (instruments faibles). Notre analyse en petit échantillon founit plusieurs perspectives ainsi que des extensions des précédentes procédures. En effet, la caractérisation de la distribution de ces statistiques en petit échantillon permet la construction des tests de Monte Carlo exacts pour lâexogénéité même avec les erreurs non Gaussiens. Nous montrons que ces tests sont typiquement robustes aux intruments faibles (le niveau est contrôlé). De plus, nous fournissons une caractérisation de la puissance des tests, qui exhibe clairement les facteurs qui déterminent la puissance. Nous montrons que les tests nâont pas de puissance lorsque tous les instruments sont faibles [similaire à Guggenberger(2008)]. Cependant, la puissance existe tant quâau moins un seul instruments est fort. La conclusion de Guggenberger (2008) concerne le cas où tous les instruments sont faibles (un cas dâintérêt mineur en pratique). Notre théorie asymptotique sous les hypothèses affaiblies confirme la théorie en échantillon fini. Par ailleurs, nous présentons une analyse de Monte Carlo indiquant que: (1) lâestimateur des moindres carrés ordinaires est plus efficace que celui des doubles moindres carrés lorsque les instruments sont faibles et lâendogenéité modérée [conclusion similaire à celle de Kiviet and Niemczyk (2007)]; (2) les estimateurs pré-test basés sur les tests dâexogenété ont une excellente performance par rapport aux doubles moindres carrés. Ceci suggère que la méthode des variables instrumentales ne devrait être appliquée que si lâon a la certitude dâavoir des instruments forts. Donc, les conclusions de Guggenberger (2008) sont mitigées et pourraient être trompeuses. Nous illustrons nos résultats théoriques à travers des expériences de simulation et deux applications empiriques: la relation entre le taux dâouverture et la croissance économique et le problème bien connu du rendement à lâéducation. Le troisième essai étend le test dâexogénéité du type Wald proposé par Dufour (1987) aux cas où les erreurs de la régression ont une distribution non-normale. Nous proposons une nouvelle version du précédent test qui est valide même en présence dâerreurs non-Gaussiens. Contrairement aux procédures de test dâexogénéité usuelles (tests de Durbin-Wu-Hausman et de Rvankar- Hartley), le test de Wald permet de résoudre un problème courant dans les travaux empiriques qui consiste à tester lâexogénéité partielle dâun sous ensemble de variables. Nous proposons deux nouveaux estimateurs pré-test basés sur le test de Wald qui performent mieux (en terme dâerreur quadratique moyenne) que lâestimateur IV usuel lorsque les variables instrumentales sont faibles et lâendogénéité modérée. Nous montrons également que ce test peut servir de procédure de sélection de variables instrumentales. Nous illustrons les résultats théoriques par deux applications empiriques: le modèle bien connu dâéquation du salaire [Angist et Krueger (1991, 1999)] et les rendements dâéchelle [Nerlove (1963)]. Nos résultats suggèrent que lâéducation de la mère expliquerait le décrochage de son fils, que lâoutput est une variable endogène dans lâestimation du coût de la firme et que le prix du fuel en est un instrument valide pour lâoutput. Le quatrième essai résout deux problèmes très importants dans la littérature économétrique. Dâabord, bien que le test de Wald initial ou étendu permette de construire les régions de confiance et de tester les restrictions linéaires sur les covariances, il suppose que les paramètres du modèle sont identifiés. Lorsque lâidentification est faible (instruments faiblement corrélés avec la variable à instrumenter), ce test nâest en général plus valide. Cet essai développe une procédure dâinférence robuste à lâidentification (instruments faibles) qui permet de construire des régions de confiance pour la matrices de covariances entre les erreurs de la régression et les variables explicatives (possiblement endogènes). Nous fournissons les expressions analytiques des régions de confiance et caractérisons les conditions nécessaires et suffisantes sous lesquelles ils sont bornés. La procédure proposée demeure valide même pour de petits échantillons et elle est aussi asymptotiquement robuste à lâhétéroscédasticité et lâautocorrélation des erreurs. Ensuite, les résultats sont utilisés pour développer les tests dâexogénéité partielle robustes à lâidentification. Les simulations Monte Carlo indiquent que ces tests contrôlent le niveau et ont de la puissance même si les instruments sont faibles. Ceci nous permet de proposer une procédure valide de sélection de variables instrumentales même sâil y a un problème dâidentification. La procédure de sélection des instruments est basée sur deux nouveaux estimateurs pré-test qui combinent lâestimateur IV usuel et les estimateurs IV partiels. Nos simulations montrent que: (1) tout comme lâestimateur des moindres carrés ordinaires, les estimateurs IV partiels sont plus efficaces que lâestimateur IV usuel lorsque les instruments sont faibles et lâendogénéité modérée; (2) les estimateurs pré-test ont globalement une excellente performance comparés à lâestimateur IV usuel. Nous illustrons nos résultats théoriques par deux applications empiriques: la relation entre le taux dâouverture et la croissance économique et le modèle de rendements à lâéducation. Dans la première application, les études antérieures ont conclu que les instruments nâétaient pas trop faibles [Dufour et Taamouti (2007)] alors quâils le sont fortement dans la seconde [Bound (1995), Doko et Dufour (2009)]. Conformément à nos résultats théoriques, nous trouvons les régions de confiance non bornées pour la covariance dans le cas où les instruments sont assez faibles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper extends the Competitive Storage Model by incorporating prominent features of the production process and financial markets. A major limitation of this basic model is that it cannot successfully explain the degree of serial correlation observed in actual data. The proposed extensions build on the observation that in order to generate a high degree of price persistence, a model must incorporate features such that agents are willing to hold stocks more often than predicted by the basic model. We therefore allow unique characteristics of the production and trading mechanisms to provide the required incentives. Specifically, the proposed models introduce (i) gestation lags in production with heteroskedastic supply shocks, (ii) multiperiod forward contracts, and (iii) a convenience return to inventory holding. The rational expectations solutions for twelve commodities are numerically solved. Simulations are then employed to assess the effects of the above extensions on the time series properties of commodity prices. Results indicate that each of the features above partially account for the persistence and occasional spikes observed in actual data. Evidence is presented that the precautionary demand for stocks might play a substantial role in the dynamics of commodity prices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the problem of testing the error distribution in a multivariate linear regression (MLR) model. The tests are functions of appropriately standardized multivariate least squares residuals whose distribution is invariant to the unknown cross-equation error covariance matrix. Empirical multivariate skewness and kurtosis criteria are then compared to simulation-based estimate of their expected value under the hypothesized distribution. Special cases considered include testing multivariate normal, Student t; normal mixtures and stable error models. In the Gaussian case, finite-sample versions of the standard multivariate skewness and kurtosis tests are derived. To do this, we exploit simple, double and multi-stage Monte Carlo test methods. For non-Gaussian distribution families involving nuisance parameters, confidence sets are derived for the the nuisance parameters and the error distribution. The procedures considered are evaluated in a small simulation experi-ment. Finally, the tests are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose exact inference procedures for asset pricing models that can be formulated in the framework of a multivariate linear regression (CAPM), allowing for stable error distributions. The normality assumption on the distribution of stock returns is usually rejected in empirical studies, due to excess kurtosis and asymmetry. To model such data, we propose a comprehensive statistical approach which allows for alternative - possibly asymmetric - heavy tailed distributions without the use of large-sample approximations. The methods suggested are based on Monte Carlo test techniques. Goodness-of-fit tests are formally incorporated to ensure that the error distributions considered are empirically sustainable, from which exact confidence sets for the unknown tail area and asymmetry parameters of the stable error distribution are derived. Tests for the efficiency of the market portfolio (zero intercepts) which explicitly allow for the presence of (unknown) nuisance parameter in the stable error distribution are derived. The methods proposed are applied to monthly returns on 12 portfolios of the New York Stock Exchange over the period 1926-1995 (5 year subperiods). We find that stable possibly skewed distributions provide statistically significant improvement in goodness-of-fit and lead to fewer rejections of the efficiency hypothesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent work suggests that the conditional variance of financial returns may exhibit sudden jumps. This paper extends a non-parametric procedure to detect discontinuities in otherwise continuous functions of a random variable developed by Delgado and Hidalgo (1996) to higher conditional moments, in particular the conditional variance. Simulation results show that the procedure provides reasonable estimates of the number and location of jumps. This procedure detects several jumps in the conditional variance of daily returns on the S&P 500 index.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the interdependence between fiscal and monetary policies, and their joint role in the determination of the price level. The government is characterized by a long-run fiscal policy rule whereby a given fraction of the outstanding debt, say d, is backed by the present discounted value of current and future primary surpluses. The remaining debt is backed by seigniorage revenue. The parameter d characterizes the interdependence between fiscal and monetary authorities. It is shown that in a standard monetary economy, this policy rule implies that the price level depends not only on the money stock, but also on the proportion of debt that is backed with money. Empirical estimates of d are obtained for OECD countries using data on nominal consumption, monetary base, and debt. Results indicate that debt plays only a minor role in the determination of the price level in these economies. Estimates of d correlate well with institutional measures of central bank independence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper constructs and estimates a sticky-price, Dynamic Stochastic General Equilibrium model with heterogenous production sectors. Sectors differ in price stickiness, capital-adjustment costs and production technology, and use output from each other as material and investment inputs following an Input-Output Matrix and Capital Flow Table that represent the U.S. economy. By relaxing the standard assumption of symmetry, this model allows different sectoral dynamics in response to monetary policy shocks. The model is estimated by Simulated Method of Moments using sectoral and aggregate U.S. time series. Results indicate 1) substantial heterogeneity in price stickiness across sectors, with quantitatively larger differences between services and goods than previously found in micro studies that focus on final goods alone, 2) a strong sensitivity to monetary policy shocks on the part of construction and durable manufacturing, and 3) similar quantitative predictions at the aggregate level by the multi-sector model and a standard model that assumes symmetry across sectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most panel unit root tests are designed to test the joint null hypothesis of a unit root for each individual series in a panel. After a rejection, it will often be of interest to identify which series can be deemed to be stationary and which series can be deemed nonstationary. Researchers will sometimes carry out this classification on the basis of n individual (univariate) unit root tests based on some ad hoc significance level. In this paper, we demonstrate how to use the false discovery rate (FDR) in evaluating I(1)=I(0) classifications based on individual unit root tests when the size of the cross section (n) and time series (T) dimensions are large. We report results from a simulation experiment and illustrate the methods on two data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Une compréhension approfondie et un meilleur contrôle de l'auto-assemblage des copolymères diblocs (séquencés) et de leurs complexes à l'interface air/eau permettent la formation contrôlée de nanostructures dont les propriétés sont connues comme alternative à la nanolithographie. Dans cette thèse, des monocouches obtenues par les techniques de Langmuir et de Langmuir-Blodgett (LB) avec le copolymère dibloc polystyrène-poly(4-vinyl pyridine) (PS-PVP), seul ou complexé avec de petites molécules par liaison hydrogène [en particulier, le 3-n-pentadécylphénol (PDP)], ont été étudiées. Une partie importante de notre recherche a été consacrée à l'étude d'une monocouche assemblée atypique baptisée réseau de nanostries. Des monocouches LB composées de nanostries ont déjà été rapportées dans la littérature mais elles coexistent souvent avec d'autres morphologies, ce qui les rend inutilisables pour des applications potentielles. Nous avons déterminé les paramètres moléculaires et les conditions expérimentales qui contrôlent cette morphologie, la rendant très reproductible. Nous avons aussi proposé un mécanisme original pour la formation de cette morphologie. De plus, nous avons montré que l'utilisation de solvants à haut point dâébullition, non couramment utilisés pour la préparation des films Langmuir, peut améliorer l'ordre des nanostries. En étudiant une large gamme de PS-PVP avec des rapports PS/PVP et des masses molaires différents, avec ou sans la présence de PDP, nous avons établi la dépendance des types principaux de morphologie (planaire, stries, nodules) en fonction de la composition et de la concentration des solutions. Ces observations ont mené à une discussion sur les mécanismes de formation des morphologies, incluant la cinétique, lâassemblage moléculaire et lâeffet du démouillage. Nous avons aussi démontré pour la première fois que le plateau dans l'isotherme des PS-PVP/PDP avec morphologie de type nodules est relié à une transition ordre-ordre des nodules (héxagonal-tétragonal) qui se produit simultanément avec la réorientation du PDP, les deux aspects étant clairement observés par AFM. Ces études ouvrent aussi la voie à l'utilisation de films PS-PVP/PDP ultraminces comme masque. La capacité de produire des films nanostructurés bien contrôlés sur différents substrats a été démontrée et la stabilité des films a été vérifiée. Le retrait de la petite molécule des nanostructures a fait apparaître une structure interne à explorer lors dâétudes futures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le but de cette thèse est d étendre la théorie du bootstrap aux modèles de données de panel. Les données de panel s obtiennent en observant plusieurs unités statistiques sur plusieurs périodes de temps. Leur double dimension individuelle et temporelle permet de contrôler l 'hétérogénéité non observable entre individus et entre les périodes de temps et donc de faire des études plus riches que les séries chronologiques ou les données en coupe instantanée. L 'avantage du bootstrap est de permettre d obtenir une inférence plus précise que celle avec la théorie asymptotique classique ou une inférence impossible en cas de paramètre de nuisance. La méthode consiste à tirer des échantillons aléatoires qui ressemblent le plus possible à l échantillon d analyse. L 'objet statitstique d intérêt est estimé sur chacun de ses échantillons aléatoires et on utilise l ensemble des valeurs estimées pour faire de l inférence. Il existe dans la littérature certaines application du bootstrap aux données de panels sans justi cation théorique rigoureuse ou sous de fortes hypothèses. Cette thèse propose une méthode de bootstrap plus appropriée aux données de panels. Les trois chapitres analysent sa validité et son application. Le premier chapitre postule un modèle simple avec un seul paramètre et s 'attaque aux propriétés théoriques de l estimateur de la moyenne. Nous montrons que le double rééchantillonnage que nous proposons et qui tient compte à la fois de la dimension individuelle et la dimension temporelle est valide avec ces modèles. Le rééchantillonnage seulement dans la dimension individuelle n est pas valide en présence d hétérogénéité temporelle. Le ré-échantillonnage dans la dimension temporelle n est pas valide en présence d'hétérogénéité individuelle. Le deuxième chapitre étend le précédent au modèle panel de régression. linéaire. Trois types de régresseurs sont considérés : les caractéristiques individuelles, les caractéristiques temporelles et les régresseurs qui évoluent dans le temps et par individu. En utilisant un modèle à erreurs composées doubles, l'estimateur des moindres carrés ordinaires et la méthode de bootstrap des résidus, on montre que le rééchantillonnage dans la seule dimension individuelle est valide pour l'inférence sur les coe¢ cients associés aux régresseurs qui changent uniquement par individu. Le rééchantillonnage dans la dimen- sion temporelle est valide seulement pour le sous vecteur des paramètres associés aux régresseurs qui évoluent uniquement dans le temps. Le double rééchantillonnage est quand à lui est valide pour faire de l inférence pour tout le vecteur des paramètres. Le troisième chapitre re-examine l exercice de l estimateur de différence en di¤érence de Bertrand, Duflo et Mullainathan (2004). Cet estimateur est couramment utilisé dans la littérature pour évaluer l impact de certaines poli- tiques publiques. L exercice empirique utilise des données de panel provenant du Current Population Survey sur le salaire des femmes dans les 50 états des Etats-Unis d Amérique de 1979 à 1999. Des variables de pseudo-interventions publiques au niveau des états sont générées et on s attend à ce que les tests arrivent à la conclusion qu il n y a pas d e¤et de ces politiques placebos sur le salaire des femmes. Bertrand, Du o et Mullainathan (2004) montre que la non-prise en compte de l hétérogénéité et de la dépendance temporelle entraîne d importantes distorsions de niveau de test lorsqu'on évalue l'impact de politiques publiques en utilisant des données de panel. Une des solutions préconisées est d utiliser la méthode de bootstrap. La méthode de double ré-échantillonnage développée dans cette thèse permet de corriger le problème de niveau de test et donc d'évaluer correctement l'impact des politiques publiques.