16 resultados para 1st Total-synthesis

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present studies describe, as a primary goal, our recent progess toward the synthesis of morphine alkaloids from aromatic precursors. Model substrates were synthesized which allowed investigation into Diels-Alder, radical cascade, and palladium-catalyzed bond-forming reactions as possible routes to the morphine alkaloid skeleton. As a secondary objective, three separate series of aromatic substrates were subjected to whole-cell oxidation with Escherichia coli JM 109 (pDTG601), a recombinant organism over-expressing the enzyme toluene dioxygenase. Included in this study were bromothioanisoles, dibromobenzenes, and cyclopropylbenzene derivatives. The products of oxidation were characterized by chemical conversion to known intermediates. The synthetic utility of one of these bacterial metabolites, derived from oxidation of o-dibromobenezene, was demonstrated by chemical conversion to (-)conduritol E.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(S)-4-Hydroxy-a-lapachone has been prepared for the first time. The commercially available compound 2-acetyl-1-naphthol was used as the starting material. The synthesis involved methylation, followed by Baeyer-Villiger oxidation, and hydrolysis of the acetate to give 1-methoxy-2-naphthol. After protecting of the hydroxyl group, t-BuLi was used to form 3-(3',3'-dimethyl-acryloyl)-1- meth oxy-2- (meth oxymethoxy)-naphthalen e. eycl izationand oxidation then gave 4-keto-a-lapachone. Finally enzymic biotransformation by Mortierella isabellina ATCC 42613 was used to yield the target compound. The enantiomeric excess of the product was determined to be ~98% by using 1H NMR chiral shift analysis. The overall yield is 80/0. The biological activity of (S)-4-hydroxy-alapachone and its acetate are under investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Described herein is the chemoenzymatic total synthesis of several Amaryllidaceae constituents and their unnatural C-I analogues. A new approach to pancratistatin and related compounds will be discussed along with the completed total synthesis of 7 -deoxypancratistatin and trans-dihydrolycoricidine. Evaluation of all new C-l analogues as cancer cell growth inhibitory agents is described. The enzymatic oxidation of dibromobenzenes by Escherichia coli 1M 109 (pDTG60 1) is presented along with conversion of their metabolites to (-)-conduritol E. Investigation into the steric and functional factors governing the enzymatic dihydroxylation of various benzoates by the same organism is also discussed. The synthetic utility of these metabolites is demonstrated through their conversion to pseudo-sugars, aminocyclitols, and complex bicyclic ring systems. The current work on the total synthesis of some morphine alkaloids is also presented. Highlighted will be the synthesis of several model systems related to the efficient total synthesis of thebaine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present studies describe our recent work on expanding the use of the Burgess reagent and its reaction with oxiranes. Several new variants of the Burgess reagent and its chiral auxiliary version were evaluated for their thermal stability by NMR spectroscopy. Three new versions of the reagent were synthesized and their stability was determined. The reactivity of all five Burgess reagents was compared in a dehydration reaction and reactions with epoxides and diols. Progress toward a chemoenzymatic synthesis of morphine is also included in this report. The synthesis began with the whole cell oxidation of bromobenzene by Escherichia coli JMI09(pDTG601). The preparation of several precursors for a key step involving the lohnson-Claisen rearrangement and progress toward the total synthesis are described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present studies describe recent progress toward the synthesis of the thebaine. Model substrates were synthesized using pyridazine derivatives as a starting material, which allowed to assess the key Diels-Alder reaction as a route to construct the thebaine core.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present studies describe our recent progress in target oriented synthesis of complex organic molecules from aromatic precursors. The latest synthetic approaches toward vinca alkaloids are described and include the construction of model substrates for the investigation into Diels-Alder, radical cascade, and tandem Michael addition reactions as possible routes to the family of alkaloids. Also described are the chemoenzymatic syntheses of the natural product (-)-idesolide and unnatural polyhydroxylated pyrrolidines generated from the biotransformation of benzoic acid with Ralstonia eutropha B9.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes the chemoenzymatic synthesis of three morphine alkaloids. The total synthesis of dihydrocodeine and hydrocodone was accomplished starting from bromobenzene in 16 and 17 steps, respectively. The key steps included a microbial oxidation of bromobenzene by E. coli JM109 (pDTG601A), a Kazmaier-Claisen rearrangement of glycinate ester to generate C-9 and C-14 stereo centers, a Johnson-Claisen rearrangement to set the C-13 quaternary center, and a C-10/C-11 ring closure via a Friedel-Crafts reaction. In addition, the total synthesis of ent-hydromorphone starting from β-bromoethylbenzene in 12 steps is also described. The key reactions included the enzymatic dihydroxylation of β-bromoethylbenzene to the corresponding cis-cyclohexadienediol, a Mitsunobu reaction, and an oxidative dearomatization followed by an intramolecular [4+2] cycloaddition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two efficient, regio- and stereo controlled synthetic approaches to the synthesis of racemic analogs of pancratistatin have been accomplished and they serve as the model systems for the total synthesis of optically active 7-deoxy-pancratistatin. In the Diels-Alder approach, an efficient [4+2] cycloaddition of 3,4-methylenedioxyco- nitrostyrene with Danishefsky's diene to selectively form an exo-nitro adduct has been developed as the key step in the construction of the C-ring of the target molecule. In the Michael addition approach, the key step was a conjugate addition of an organic zinc-cuprate to the 3,4-methylenedioxy-(B-nitrostyrene, followed by a diastereocontroUed closure to form the cyclohexane C-ring of the target molecule via an intramolecular nitro-aldol cyclization on a neutral alumina surface. A chair-like transition state for such a cyclization has been established and such a chelation controlled transition state can be useful in the prediction of diastereoselectivity in other related 6-exo-trig nitroaldol reactions. Cyclization of the above products fi^om both approaches by using a Bischler-Napieralski type reaction afforded two lycoricidine derivatives 38 and 50 in good yields. The initial results from the above modeling studies as well as the analysis of the synthetic strategy were directed to a chiral pool approach to the total synthesis of optically active 7-deoxy-pancratistatin. Selective monsilylation and iodination of Ltartaric acid provided a chiral precursor for the proposed key Michael transformation. The outlook for the total synthesis of 7-deoxy-pancratistatin by this approach is very promising.A concise synthesis of novel designed, optically pure, Cz-symmetrical disulfonylamide chiral ligands starting from L-tartaric acid has also been achieved. This sequence employs the metallation of indole followed by Sfj2 replacement of a dimesylate as the key step. The activity for this Cz-symmetric chiral disulfonamide ligand in the catalytic enantioselective reaction has been confirmed by nucleophilic addition to benzaldehyde in the disulfonamide-Ti (0-i-Pr)4-diethylzinc system with a 48% yield and a 33% e.e. value. Such a ligand tethered with a suitable metal complex should be also applicable towards the total synthesis of 7-deoxy-pancratistatin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present thesis describes our latest results in the chemistry of morphine alkaloids. An enantiodivergent synthesis of codeine utilizing a cis-cyclohexadiene diol derived from microbial whole cell oxidation of ~-bromoethylbenzene,as starting material is discussed. The total synthesis of (+)-codeine in 14 steps featuring a Mitsunobu inversion and two intramolecular Heck cyclizations is presented. Investigation of a regioselective nucleophilic opening of a homochiral vinyl oxirane, which led to a total synthesis of the natural isomer of codeine, is detailed. Furthermore, described herein are novel methodologies designed for the transformation of naturally occurring opiates into medicinally relevant derivatives. Two studies on the conversion of thebaine into the commercially available analgesic hydrocodone, two novel ·transition metal catalyzed N-demethylation procedures for opioids, and the development of a catalytic protocol for N-demethylation and Nacylation of morphine and tropane alkaloids are presented. In addition, reactions of a menthol-based version of the Burgess reagent with epoxides are discussed. The synthetic utility of this novel chiral derivative of the Burgess reagent was demonstrated by an enantiodivergent formal total synthesis of balanol. ii

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present thesis describes the chemoenzymatic synthesis of ent-neopinone. The total synthesis of neopinone was accomplished in 14 steps from B-bromoethylbenzene. The synthesis began with a microbial oxidation of bromobenzene by Escherichia coli JM109(pDTG601) and features a Heck reaction, aldol condensation and a 1,6-conjugate addition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Described herein is the chemoenzymatic synthesis of several different types of unnatural analogues of Amaryllidaceae constituents. Development and refinement of existing and design and execution of new approaches towards the synthesis of C-1 analogues of pancratistatin and A-ring heterocyclic analogues of narciclasine are discussed. Evaluation of the new analogues as cancer growth inhibitory agents is also described

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis describes work towards the total synthesis of a 7-aza analogue of the Amaryllidaceae alkaloid narciclasine, a potent anticancer compound which suffers from a poor solubility profile. A key strategy in the formation of the C-ring is the biotransformation of bromobenzene by E.coli JM109. The densely substituted heterocyclic A-ring is obtained by sequential directed ortho-metalation and the fragment union accomplished with an amide coupling and subsequent intramolecular Heck reaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research work has been planned with the intention of synthesizing optically active bicyclo[3,l,0]-hexan-2-one using chiral carbodiimides. Several carbodiimides have been prepared for practice and for attempts at asymmetric induction. The total synthesis of dibenzo[e,g]- (l:3)diazonine and the partial synthesis of l:13-dimethyldibenzo[e,g]- (l:3)diazonine are reported. Attempts to resolve 6,6f-dimethyl-2,2t-diphenic acid were not successful. The NMR spectra of carbodiimides and the related thioureas are compared. The reaction transition state of the 4-hydroxycyclohexanone with optically pure R,R(+)-di(a-phenylethyl)-carbodiimide has been considered. The ORD application to chiral cyclohexanones is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the most challenging tasks for a synthetic organic chemist today, is the development of chemo, regio, and stereoselective methodologies toward the total synthesis of macromolecules. r . The objective of my thesis was to develop methodologies towards this end. The first part of my project was to develop highly functionalized chirons from D-glucose, a cheap, chiral starting material, to be utilized in this capacity. The second part of the project dealt with modifying the carbon-carbon bond forming Suzuki reaction, which is utilized quite often as a means of combining molecular sub units in total synthesis applications. As previously stated the first area of the project was to develop high value chirons from D-glucose, but the mechanism of their formation was also investigated. The free radical initiated oxidative fragmentation of benzylidene acetals was investigated through the use of several test-case substrates in order to unravel the possible mechanistic pathways. This was performed by reacting the different acetals with N-bromosuccinimide and benzoyl peroxide in chlorobenzene at 70^C in all cases. Of the three mechanistic pathways discussed in the literature, it was determined, from the various reaction products obtained, that the fragmentation of the initial benzylic radical does not occur spontaneously but rather, oxidation proceeds to give the benzyl bromide, which then fragments via a polar pathway. It was also discovered that the regioselectivity of the fragmentation step could be altered through incorporation of an allylic system into the benzylidene acetal. This allows for the acquisition of a new set of densely functionalized. chiral, valuable synthetic intermediates in only a few steps and in high yields from a-Dglucose. The second part of the project was the utilization of the phosphonium salt room temperature ionic liquid tetradecyltrihexylphosphonium chloride (THPC) as an efficient reusable medium for the palladium catalyzed Suzuki cross-coupling reaction of aryl halides, including aryl chlorides, under mild conditions. The cross-coupling reactions were found to proceed in THPC containing small amounts of water and toluene using potassium phosphate and 1% Pd2(dba)3. Variously substituted iodobenzenes, including electron rich derivatives, reacted efficiently in THPC with a variety of arylboronic acids and afforded complete conversion within 1 hour at 50 ^C. The corresponding aryl bromides also reacted under these conditions with the addition of a catalytic amount of triphenylphosphine that allowed for complete conversion and high isolated yields. The reactions involving aryl chlorides were considerably slower, although the addition of triphenylphosphine and heating at 70 ^C allowed high conversion of electron deficient derivatives. Addition of water and hexane to the reaction products results in a triphasic system in which the top hexane phase contained the biaryl products, the palladium catalyst remained fully dissolved in the central THPC layer, while the inorganic salts were extracted into the lower aqueous phase. The catalyst was then recycled by removing the top and bottom layers and adding the reagents to the ionic liquid which was heated again at 50 ^C; resulting in complete turnover of iodobenzene. Repetition of this procedure gave the biphenyl product in 82-97% yield (repeated five times) for both the initial and recycled reaction sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hypothesis that rapid y-aminobutyric acid (GABA) accumulation is a plant defense against phytophagous insects was investigated. Simulation of mechanical damage resulting from phytophagous insect activity increased soybean (Glycine max L.) leaf GABA 10- to 25-fold within 1 to 4 min. Pulverizing leaf tissue resulted in a value of 2. 15 (±O. 11 SE) ~mol GABA per gram fresh weight. Increasing the GABA levels in a synthetic diet from 1.6 to 2.6 Jlffiol GABA per gram fresh weight reduced the growth rates, developmental rates, total biomass (50% reduction), and survival rates (30% reduction) of cultured Oblique banded leaf-roller (OBLR) (Choristonellra rosacealla Harris) larvae. In field experiments OBLR larvae were found predominantly on young terminal leaves which have a reduced capacity to produce GABA in response to mechanical damage. Glutamate decarboxylase (GAD) is a cytosolic enzyme which catalyses the decarboxylation of L-Glu to GABA. GAD is a calmodulin binding enzyme whose activity is stimulated dramatically by increased cytosolic H+ or Ca2 + ion concentrations. Phytophagous insect activity will disrupt the cellular compartmentation of H+ and Ca2 +, activate GAD and subsequent GABA accumulation. In animals GABA is a major inhibitory neurotransmitter. The possible mechanisms resulting in GABA inhibited growth and development of insects are discussed.