13 resultados para transformations of VFAs

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Växtoljor som utgör en förnybar naturresurs används som sådana eller i modifierade former i många industriella processer, som är av stor betydelse för vårt vardagliga liv. Växtoljor används i livsmedel, i kemiska och farmaceutiska produkter, i textilindustrin, för framställning av färgämnen och beläggningsmaterial samt som miljövänliga bränslekomponenter. Fetter och oljor hör till de äldsta kemiska komponenterna som utnyttjas av människan. De består huvudsakligen av glycerolestrar och fettsyror. Fetter och oljor har typiskt en kolkedja med kol-koldubbelbindningar samt karboxyl- och estergrupper, som kan genom hydrering eller dekarboxylering konverteras till nyttiga och miljövänliga produkter med hjälp av ädelmetallkatalysatorer. Aktivt kol (C) används som bärare på katalysatorerna. Väteaddition, d.v.s. hydrering av växtoljor har varit föremål för omfattande forskning i över hundra års tid. Hydreringen är en viktig process, för den tillämpas på produktion av fetter och margarin. Omättade fettsyror hydreras traditionellt på nickelbaserade heterogena katalysatorer. Samtidigt med en partiell hydrering av fettsyrorna och fettsyraestrarna som har två dubbelbindningar pågår också isomeringsreaktioner, vilka ger cis- och transisomerer av reaktantmolekylerna. Den största nackdelen med nickelkatalysatorerna är deras giftighet samt bildning av ohälsosamma transisomerer i reaktionsprodukterna. Dessutom deaktiveras nickelkatalysatorn snabbt p.g.a. att nickeltvålar bildas i reaktionsblandningen. Platinabaserade katalysatorer lider däremot inte av dessa begränsningar. Metaller i platinagruppen i det periodiska systemet studerades i detalj för att avslöja kinetiska effekter i hydreringen av cis-metyloleat. Palladium, rutenium, rhodium, platina och iridium användes som katalytiska metaller. Metallhalten på aktivkolbärare var 1 vikt-%. De olika platinametallerna undersöktes för att kartlägga konkurrerande hydrerings- och isomeringsrutter på metallerna. Det visade sig att metallerna i andra raden av det periodiska systemet (Ru, Rh, Pd) är aktivare i isomeringsprocesserna, medan metallerna i tredje raden (Ir, Pt) har en lägre aktivitet. Pd/C valdes bland platinametallerna, för att den är attraktiv ur ekonomisk synvinkel och den är mycket aktiv och selektiv, speciellt jämfört med nickel. Tyngdpunkten i arbetet var utvecklingen av en alternativ, palladiumbaserad hydreringsteknologi som skulle ersätta den traditionella teknologin som är baserad på användningen av nickelkatalysatorer. Palladiumbaserade katalysatorer kan återcirkuleras, de är aktivare och mera resistenta mot syror och de bildar mindre mängder av skadliga transisomerer. För att denna teknologi skall bli ekonomiskt hållbar och konkurrenskraftig, måste den basera sig på de bästa möjliga katalysatorerna, vilket innebär att en optimal kombination av hög aktivitet och selektivitet samt en lång livstid för katalysatorn krävs. Därför inkluderades teknologiska aspekter kraftigt i forskningen. Mycket arbete satsades på design av palladium på en mesoporös kolbärare och undersökning av korrelationerna mellan katalysatorns egenskaper och dess aktivitet i isomeriseringsreaktionerna och i hydreringen av kol-koldubbelbindningarna i reaktantmolekylen. Katalysatorerna karakteriserades med många fysikaliska och kemiska metoder (transmissionselektronmikroskopi (TEM), röntgendiffraktion (XRD), röntgenfotoelektronspektroskopi (XPS), temperaturprogrammerad reduktion (TPR), temperaturprogrammerad desorption (TPD) av kolmonoxid, kemisorption av kolmonoxid, fysisorption av kväve). Temperaturens, vätetryckets och katalysatorkoncentrationens inverkan på fettsyra- och isomersammansättningen hos de hydrerade oljorna bestämdes under kinetiska betingelser, i frånvaro av massöverföringseffekter. Syreavspjälkning genom fullständig dekarboxylering av karboxylgruppen i fettsyramolekylen är det hittills bästa sättet att framställa miljövänlig dieselolja, eftersom linjära paraffiner fås som reaktionsprodukter och en tillsats av dyr vätgas undviks. Deoxygeneringen undersöktes systematiskt på en Pd/C-katalysator (Sibunit) genom att använda mättade fettsyror C16-C20 och C22 som råvara. Produktmolekylen blev en dieselliknande kolvätemolekyl, med en kolatom färre än i utgångsmolekylen. Lika stora dekarboxyleringshastigheter observerades för rena, mättade fettsyror. En jämförelse av deoxygenereringshastigheterna för stearin-, olein- och linolsyra som råvara vid 300oC i närvaro av 1-volymprocent väte på mesoporös Pd/C (Sibunit) avslöjade att katalysatorns aktivitet och selektivitet ökade med en ökande mättningsgrad av reaktantmolekylen. Då stearinsyra användes som utgångsmolekyl, bestod huvudprodukterna av önskade C17-kolväten, medan mängden av aromatiska C17-komponenter ökade, då olein- och linolsyra användes som utgångsmolekyler. Katalysatordeaktiveringen var relativt påfallande vid deoxygeneringen av linolsyra så att endast 3% av fettsyrorna omsattes till produkter i 330 min. Deaktiveringen orsakades av aromatiska C17-komponenter samt av fettsyradimerer, som bildades via en Diels-Alderreaktion. Hydreringen av omättade fettsyror kan därför rekommenderas som ett primärt kemiskt steg i framställningen av miljövänliga dieselprodukter. Målet var också att öka förståelsen av palladiummetallernas roll i nanoskala, speciellt effekten av metallpartiklarna i katalytisk hydrering och deoxygenering. Pd/C-katalysatorer med lika stora halter av Pd syntetiserades och metallens dispersion på bärarmaterialet varierades systematiskt genom en kontrollerad uppväxt av palladiumnanopartiklar på aktiv kolbärare. Metalldispersionens effekt på hydrerings-hastigheten och cis-transförhållandet undersöktes i detalj. En optimal metalldispersion som gav den högsta dekarboxyleringshastigheten hittades. Massöverföringens inverkan på reaktionens hastighet studerades experimentellt och temperaturprogrammerad desorption av kolmonoxid från katalysatorytan undersöktes ingående. Hydrering av växtoljor genomfördes under satsvisa och kontinuerliga betingelser. Både finfördelat Pd/C och katalysatorgranulat användes i experimenten. Ett av målen med arbetet var uppskalningen av hydreringsprocesserna. Med tanke på stora produktionsvolymer var det logiskt att undersöka kontinuerliga hydrerings- och dekarboxyleringsteknologier. En kontinuerlig packad bäddreaktor studerades i laboratorieskala, vilket gav viktig information om katalysatorns långtidsstabilitet och deaktivering. Effekten av rena fettsyror och triglycerider som råvara samt metallpartikelstorleken och palladiumhalten studerades med hjälp av den kontinuerliga reaktorn. Produktionskapaciteten som erhölls med satsvis och kontinuerlig drift jämfördes. Dekarboxyleringen av stearinsyra undersöktes också i en kontinuerlig packad bädd. Omsättningsgraden blev 15% för en stabil katalysator.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nowadays biomass transformation has a great potential for the synthesis of value-added compounds with a wide range of applications. Terpenoids, extracted from biomass, are inexpensive and renewable raw materials which often have a biological activity and are widely used as important organic platform molecules in the development of new medicines as well as in the synthesis of fine chemicals and intermediates. At the same time, special attention is devoted to the application of gold catalysts to fine chemical synthesis due to their outstanding activity and/or selectivity for transformations of complex organic compounds. Conversion of renewable terpenoids in the presence of gold nanoparticles is one of the new and promising directions in the transformation of biomass to valuable chemicals. In the doctoral thesis, different kinds of natural terpenoids, such as α-pinene, myrtenol and carvone were selected as starting materials. Gold catalysts were utilized for the promising routes of these compounds transformation. Investigation of selective α-pinene isomerization to camphene, which is an important step in an industrial process towards the synthesis of camphor as well as other valuable substrates for the pharmaceutical industry, was performed. A high activity of heterogeneous gold catalysts in the Wagner-Meerwein rearrangement was demonstrated for the first time. Gold on alumina carrier was found to reach the α-pinene isomerization conversion up to 99.9% and the selectivity of 60-80%, thus making this catalyst very promising from an industrial viewpoint. A detailed investigation of kinetic regularities including catalyst deactivation during the reaction was performed. The one-pot terpene alcohol amination, which is a promising approach to the synthesis of valuable complex amines having specific physiological properties, was investigated. The general regularities of the one-pot natural myrtenol amination in the presence of gold catalysts as well as a correlation between catalytic activity, catalyst redox treatment and the support nature were obtained. Catalytic activity and product distribution were shown to be strongly dependent on the support properties, namely acidity and basicity. The gold-zirconia (Au/ZrO2) catalyst pretreated under oxidizing atmosphere was observed to be rather active, resulting in the total conversion of myrtenol and the selectivity to the corresponding amine of about 53%. The reaction kinetics was modelled based on the mechanistic considerations with the catalyst deactivation step incorporated in the mechanism. Carvone hydrogenation over a gold catalyst was studied with the general idea of investigating both the activity of gold catalysts in competitive hydrogenation of different functional groups and developing an approach to the synthesis of valuable carvone derivatives. Gold was found to promote stereo- and chemoselective carvone hydrogenation to dihydrocarvone with a predominant formation of the trans-isomer, which generally is a novel synthetic method for an industrially valuable dihydrocarvone. The solvent effect on the catalytic activity as well as on the ratio between trans- and cis-dihydrocarvone was evaluated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the globalising business environment ever fewer market areas remain unknown. Mongolia is yet only considered as an isolated strip between two power states. The purpose of this study is to put Mongolia on the map of academic business research. This is done by describing the transforming network of a foreign company operating in Mongolia. The objective of the study is approached through a case study, which presents the transformation of a Finnish company operating in Mongolia. This study aims at providing understanding on how the foreign case company observes the transformations of its network. The transformation within the case company is reflected to the transformations that occur in the Mongolian business environment. This study was conducted through a qualitative, intrinsic case study approach. The empirical data was gathered by using the method of network pictures. The network pictures were completed with the assistance of themed interviews. In order to be able to analyse the transformation within a network, three different time periods were observed: the past period around 2000, the present around 2014, and the estimated future around 2020. The data was collected from four executives positioned either in Finland, Russia or Mongolia. The respondents have a long experience within the case company, they hold managerial position, and therefore were able to offer valuable data for this study. The analytical framework used to analyse the collected data was built on the industrial network model, the ARA (actors-resources-activities)-model. The study shows that the changing business environment of Mongolia was utilised by the case company. In order to better meet the transforming customer wishes, the case company transformed from being a retailer to being a manufacturer. The case company was able to become a pioneer in the market. Thus, the case company has undergone similar kind of rapid transformation as the economy of Mongolia in entirety. This study shows that the general nature of the ARA-model makes it usable for new research contexts. The initial ARA-model offers a way to identify the dimensions of a network and a mean to understand these dimensions. The ARA-model can be applied to different contexts and to all time dimensions, past, present and future. The managerial recommendations offered in this study are directed towards the managers that plan to start operations in Mongolia. While this study is the first of its kind, it offers a good starting point for the future research on the change of Mongolian business networks. Valuable information could, for example, be obtained from a comparative study between the case company of this study and a multinational mining company operating in Mongolia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Työssä tutkittiin typpihapon soveltuvuutta nikkelin takaisinuuttoon. Tarkoituksena oli selvittää, millä typpihapon konsentraatioilla orgaaninen faasi, joka koostuu Versatic 10 uuttoreagenssista ja alifaattisesta laimentimesta, alkaa nitrautua tai hapettua ja mitkä ovat mahdolliset sivureaktiot. Lisäksi tutkittiin rikkihapon ja eräiden orgaanisten aineiden kontaminaation vaikutusta uuttoliuokseen. Kirjallisuusosassa kartoitetaan mahdollisten nitrautumisreaktioiden mekanismit, sekä kuvataan laimentimen, uuttoreagenssin ja mahdollisten reaktiotuotteiden ominaisuuksia, sekä niiden mahdollisessa muodostumisessa syntyviä riskejä. Orgaanisen faasin kestotesteissä tutkittavia muuttujia olivat typpi- ja rikkihapon konsentraatio, sekoitusaika, lämpötila, avoin tai suljettu astia sekä vieraiden aineiden kontaminaatio. Kontaminaatiota aiheuttavien orgaanisten materiaalien funktionaaliset ryhmät olivat hydroksi-, karbonyyli- ja amiiniryhmät, joiden lisäksi tutkittiin syklisen yhdisteen kontaminaatiota. Analyyseissä käytettiin FT-IR- spektroskopiaa, jolla tutkittiin reagenssin funktionaalisen ryhmän reaktioita ja uusien ryhmien muodostumista, sekä seurattiin selkeytyksessä erottumattomien typpiyhdisteiden määrää ja laatua orgaanisessa faasissa. Uuttofaasin koostumuksen muutosta seurattiin myös mittaamalla leimahduspisteen muutosta.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays, the re-refining of the used lube oils has gained worldwide a lot of attention due to the necessity for added environmental protection and increasingly stringent environmental legislation. One of the parameters determining the quality of the produced base oils is the composition of feedstock. Estimation of the chemical composition of the used oil collected from several European locations showed that the hydrocarbon structure of the motor oil is changed insignificantly during its operation and the major part of the changes is accounted for with depleted oil additives. In the lube oil re-refining industry silicon, coming mainly from antifoaming agents, is recognized to be a contaminant generating undesired solid deposits in various locations in the re-refining units. In this thesis, a particular attention was paid to the mechanism of solid product formation during the alkali treatment process of silicon-containing used lube oils. The transformations of a model siloxane, tetramethyldisiloxane (TMDS), were studied in a batch reactor at industrially relevant alkali treatment conditions (low temperature, short reaction time) using different alkali agents. The reaction mechanism involving solid alkali metal silanolates was proposed. The experimental data obtained demonstrated that the solids were dominant products at low temperature and short reaction time. The liquid products in the low temperature reactions were represented mainly by linear siloxanes. The prolongation of reaction time resulted in reduction of solids, whereas both temperature and time increase led to dominance of cyclic products in the reaction mixture. Experiments with the varied reaction time demonstrated that the concentration of cyclic trimer being the dominant in the beginning of the reaction diminished with time, whereas the cyclic tetramer tended to increase. Experiments with lower sodium hydroxide concentration showed the same effect. In addition, a decrease of alkali agent concentration in the initial reaction mixture accelerated TMDS transformation reactions resulting in solely liquid cyclic siloxanes yields. Comparison of sodium and potassium hydroxides applied as an alkali agent demonstrated that potassium hydroxide was more efficient, since the activation energy in KOH presence was almost 2-fold lower than that for sodium hydroxide containing reaction mixture. Application of potassium hydroxide for TMDS transformation at 100° C with 3 hours reaction time resulted in 20 % decrease of solid yields compared to NaOH-containing mixture. Moreover, TMDS transformations in the presence of sodium silanolate applied as an alkali agent led to formation of only liquid products without formation of the undesired solids. On the basis of experimental data and the proposed reaction mechanism, a kinetic model was developed, which provided a satisfactory description of the experimental results. Suitability of the selected siloxane as a relevant model of industrial silicon-containing compounds was verified by investigation of the commercially available antifoam agent in base-catalyzed conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Iron is one of the most common elements in the earth’s crust and thus its availability and economic viability far exceed that of metals commonly used in catalysis. Also the toxicity of iron is miniscule, compared to the likes of platinum and nickel, making it very desirable as a catalyst. Despite this, prior to the 21st century, the applicability of iron in catalysis was not thoroughly investigated, as it was considered to be inefficient and unselective in desired transformations. In this doctoral thesis, the application of iron catalysis in combination with organosilicon reagents for transformations of carbonyl compounds has been investigated together with insights into iron catalyzed chlorination of silanes and silanols. In the first part of the thesis, the synthetic application of iron(III)-catalyzed chlorination of silanes (Si-H) and the monochlorination of silanes (SiH2) using acetyl chloride as the chlorine source is described. The reactions proceed under ambient conditions, although some compounds need to be protected from excess moisture. In addition, the mechanism and kinetics of the chlorination reaction are briefly adressed. In the second part of this thesis a versatile methodology for transformation of carbonyl compounds into three different compound classes by changing the conditions and amounts of reagents is discussed. One pot reductive benzylation, reductive halogenation and reductive etherification of ketones and aldehydes using silanes as the reducing agent, halide source or cocatalyst, were investigated. Also the reaction kinetics and mechanism of the reductive halogenation of acetophenone are briefly discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Technological innovations and the advent of digitalization have led retail business into one of its biggest transformations of all time. Consumer behaviour has changed rapidly and the customers are ever more powerful, demanding, tech-savvy and moving on various plat-forms. These attributes will continue to drive the development and robustly restructure the architecture of value creation in the retail business. The largest retail category, grocery yet awaits for a real disruption, but the signals for major change are already on the horizon. The first wave of online grocery retail was introduced in the mid 1990’s and it throve until millennium. Many overreactions, heavy investments and the burst IT-bubble almost stag-nated the whole industry for a long period of time. The second wave started with a venge-ance around 2010. Some research was carried out during the first wave from a single-viewpoint of online grocery retail, but without a comprehensive approach to online-offline business model integration. Now the accelerating growth of e-business has initiated an increased interest to examine the transformation from traditional business models towards e-business models and their integration on the companies’ traditional business models. This research strove to examine how can we recognize and analyze how digitalization and online channels are affecting the business models of grocery retail, by using business mod-el canvas as an analysis tool. Furthermore business model innovation and omnichannel retail were presented and suggested as potential solutions for these changes. 21 experts in online grocery industry were being interviewed. The thoughts of the informants were being qualitatively analysed by using an analysis tool called the business model canvas. The aim of this research was to portray a holistic view on the Omnichannel grocery retail business model, and the value chain, in which the case company Arina along with its partners are operating. The key conclusions exhibited that online grocery retail business model is not an alterna-tive model nor a substitute for the traditional grocery retail business model, though all of the business model elements are to some extent affected by it, but rather a complementary business model that should be integrated into the prevailing, conventional grocery retail business model. A set of business model elements, such as value proposition and distribu-tion channels were recognized as the most important ones and sources of innovation within these components were being illustrated. Segments for online grocery retail were empiri-cally established as polarized niche markets in contrast of the segmented mass-market of the conventional grocery retail. Business model innovation was proven to be a considera-ble method and a conceptual framework, by which to come across with new value proposi-tions that create competitive advantage for the company in the contemporary, changing business environment. Arina as a retailer can be considered as a industry model innovator, since it has initiated an entire industry in its market area, where other players have later on embarked on, and in which the contributors of the value chain, such as Posti depend on it to a great extent. Consumer behaviour clearly affects and appears everywhere in the digi-talized grocery trade and it drives customers to multiple platforms where retailers need to be present. Omnichannel retail business model was suggested to be the solution, in which the new technologies are being utilized, contemporary consumer behaviour is embedded in decision-making and all of the segments and their value propositions are being served seamlessly across the channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accumulation of aqueous pollutants is becoming a global problem. The search for suitable methods and/or combinations of water treatment processes is a task that can slow down and stop the process of water pollution. In this work, the method of wet oxidation was considered as an appropriate technique for the elimination of the impurities present in paper mill process waters. It has been shown that, when combined with traditional wastewater treatment processes, wet oxidation offers many advantages. The combination of coagulation and wet oxidation offers a new opportunity for the improvement of the quality of wastewater designated for discharge or recycling. First of all, the utilization of coagulated sludge via wet oxidation provides a conditioning process for the sludge, i.e. dewatering, which is rather difficult to carry out with untreated waste. Secondly, Fe2(SO4)3, which is employed earlier as a coagulant, transforms the conventional wet oxidation process into a catalytic one. The use of coagulation as the post-treatment for wet oxidation can offer the possibility of the brown hue that usually accompanies the partial oxidation to be reduced. As a result, the supernatant is less colored and also contains a rather low amount of Fe ions to beconsidered for recycling inside mills. The thickened part that consists of metal ions is then recycled back to the wet oxidation system. It was also observed that wet oxidation is favorable for the degradation of pitch substances (LWEs) and lignin that are present in the process waters of paper mills. Rather low operating temperatures are needed for wet oxidation in order to destruct LWEs. The oxidation in the alkaline media provides not only the faster elimination of pitch and lignin but also significantly improves the biodegradable characteristics of wastewater that contains lignin and pitch substances. During the course of the kinetic studies, a model, which can predict the enhancements of the biodegradability of wastewater, was elaborated. The model includes lumped concentrations suchas the chemical oxygen demand and biochemical oxygen demand and reflects a generalized reaction network of oxidative transformations. Later developments incorporated a new lump, the immediately available biochemical oxygen demand, which increased the fidelity of the predictions made by the model. Since changes in biodegradability occur simultaneously with the destruction of LWEs, an attempt was made to combine these two facts for modeling purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fuzzy subsets and fuzzy subgroups are basic concepts in fuzzy mathematics. We shall concentrate on fuzzy subgroups dealing with some of their algebraic, topological and complex analytical properties. Explorations are theoretical belonging to pure mathematics. One of our ideas is to show how widely fuzzy subgroups can be used in mathematics, which brings out the wealth of this concept. In complex analysis we focus on Möbius transformations, combining them with fuzzy subgroups in the algebraic and topological sense. We also survey MV spaces with or without a link to fuzzy subgroups. Spectral space is known in MV algebra. We are interested in its topological properties in MV-semilinear space. Later on, we shall study MV algebras in connection with Riemann surfaces. In fact, the Riemann surface as a concept belongs to complex analysis. On the other hand, Möbius transformations form a part of the theory of Riemann surfaces. In general, this work gives a good understanding how it is possible to fit together different fields of mathematics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of new technologies to supplement fossil resources has led to a growing interest in the utilization of alternative routes. Biomass is a rich renewable feedstock for producing fine chemicals, polymers, and a variety of commodities replacing petroleumderived chemicals. Transformation of biomass into diverse valuable chemicals is the key concept of a biorefinery. Catalytic conversion of biomass, which reduces the use of toxic chemicals is one of the important approaches to improve the profitability of biorefineries. Utilization of gold catalysts allows conducting reactions under environmentally-friendly conditions, with a high catalytic activity and selectivity. Gold-catalyzed valorization of several biomass-derived compounds as an alternative approach to the existing technologies was studied in this work. Isomerization of linoleic acid via double bond migration towards biologically active conjugated linoleic acid isomers (CLA) was investigated. The activity and selectivity of various gold catalysts towards cis-9,trans-11-CLA and trans-10,cis-12-CLA were investigated in a semi-batch reactor, showing that the yield of the desired products varied, depending on the catalyst support. The structure sensitivity in the selective oxidation of arabinose was demonstrated using a series of gold catalysts with different Au cluster sizes in a shaker reactor operating in a semibatch mode. The gas-phase selective oxidation of ethanol was studied and the influence of the catalyst support on the catalytic performance was investigated. The selective oxidation of the lignan hydroxymatairesinol (HMR), extracted from the Norway spruce (Picea abies) knots, to the lignan oxomatairesinol (oxoMAT) was extensively investigated. The influence of the reaction conditions and catalyst properties on the yield of oxoMAT was evaluated. In particular, the structure sensitivity of the reaction was demonstrated. The catalyst deactivation and regeneration procedures were studied. The reaction kinetics and mechanism were advanced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, computer-based systems tend to become more complex and control increasingly critical functions affecting different areas of human activities. Failures of such systems might result in loss of human lives as well as significant damage to the environment. Therefore, their safety needs to be ensured. However, the development of safety-critical systems is not a trivial exercise. Hence, to preclude design faults and guarantee the desired behaviour, different industrial standards prescribe the use of rigorous techniques for development and verification of such systems. The more critical the system is, the more rigorous approach should be undertaken. To ensure safety of a critical computer-based system, satisfaction of the safety requirements imposed on this system should be demonstrated. This task involves a number of activities. In particular, a set of the safety requirements is usually derived by conducting various safety analysis techniques. Strong assurance that the system satisfies the safety requirements can be provided by formal methods, i.e., mathematically-based techniques. At the same time, the evidence that the system under consideration meets the imposed safety requirements might be demonstrated by constructing safety cases. However, the overall safety assurance process of critical computerbased systems remains insufficiently defined due to the following reasons. Firstly, there are semantic differences between safety requirements and formal models. Informally represented safety requirements should be translated into the underlying formal language to enable further veri cation. Secondly, the development of formal models of complex systems can be labour-intensive and time consuming. Thirdly, there are only a few well-defined methods for integration of formal verification results into safety cases. This thesis proposes an integrated approach to the rigorous development and verification of safety-critical systems that (1) facilitates elicitation of safety requirements and their incorporation into formal models, (2) simplifies formal modelling and verification by proposing specification and refinement patterns, and (3) assists in the construction of safety cases from the artefacts generated by formal reasoning. Our chosen formal framework is Event-B. It allows us to tackle the complexity of safety-critical systems as well as to structure safety requirements by applying abstraction and stepwise refinement. The Rodin platform, a tool supporting Event-B, assists in automatic model transformations and proof-based verification of the desired system properties. The proposed approach has been validated by several case studies from different application domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon dioxide is regarded, nowadays, as a primary anthropogenic greenhouse gas leading to global warming. Hence, chemical fixation of CO2 has attracted much attention as a possible way to manufacture useful chemicals. One of the most interesting approaches of CO2 transformations is the synthesis of organic carbonates. Since conventional production technologies of these compounds involve poisonous phosgene and carbon monoxide, there is a need to develop novel synthetic methods that would better match the principles of "Green Chemistry" towards protection of the environment and human health. Over the years, synthesis of dimethyl carbonate was under intensive investigation in the academia and industry. Therefore, this study was entirely directed towards equally important homologue of carbonic esters family namely diethyl carbonate (DEC). Novel synthesis method of DEC starting from ethanol and CO2 over heterogeneous catalysts based on ceria (CeO2) was studied in the batch reactor. However, the plausible drawback of the reaction is thermodynamic limitations. The calculated values revealed that the reaction is exothermic (ΔrHØ298K = ─ 16.6 J/ ) and does not occur spontaneously at rooms temperature (ΔrGØ 298K = 35.85 kJ/mol). Moreover, co-produced water easily shifts the reaction equilibrium towards reactants excluding achievement of high yields of the carbonate. Therefore, in-situ dehydration has been applied using butylene oxide as a chemical water trap. A 9-fold enhancement in the amount of DEC was observed upon introduction of butylene oxide to the reaction media in comparison to the synthetic method without any water removal. This result confirms that reaction equilibrium was shifted in favour of the desired product and thermodynamic boundaries of the reaction were suppressed by using butylene oxide as a water scavenger. In order to obtain insight into the reaction network, the kinetic experiments were performed over commercial cerium oxide. On the basis of the selectivity/conversion profile it could be concluded that the one-pot synthesis of diethyl carbonate from ethanol, CO2 and butylene oxide occurs via a consecutive route involving cyclic carbonate as an intermediate. Since commercial cerium oxide suffers from the deactivation problems already after first reaction cycle, in-house CeO2 was prepared applying room temperature precipitation technique. Variation of the synthesis parameters such as synthesis time, calcination temperature and pH of the reaction solution turned to have considerable influence on the physico-chemical and catalytic properties of CeO2. The increase of the synthesis time resulted in high specific surface area of cerium oxide and catalyst prepared within 50 h exhibited the highest amount of basic sites on its surface. Furthermore, synthesis under pH 11 yielded cerium oxide with the highest specific surface area, 139 m2/g, among all prepared catalysts. Moreover, CeO2─pH11 catalyst demonstrated the best catalytic activity and 2 mmol of DEC was produced at 180 oC and 9 MPa of the final reaction pressure. In addition, ceria-supported onto high specific surface area silicas MCM-41, SBA-15 and silica gel were synthesized and tested for the first time as catalysts in the synthesis of DEC. Deposition of cerium oxide on MCM-41 and SiO2 supports resulted in a substantial increase of the alkalinity of the carrier materials. Hexagonal SBA-15 modified with 20 wt % of ceria exhibited the second highest basicity in the series of supported catalysts. Evaluation of the catalytic activity of ceria-supported catalysts showed that reaction carried out over 20 wt % CeO2-SBA-15 generated the highest amount of DEC.