12 resultados para tRNA-derived fragments
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Selostus: Perunalajikkeiden ponsiviljelyllä tuotettujen dihaploidien protoplastien sähköfuusio
Resumo:
Selostus: Patogeenivälitteinen, siirtogeeninen kestävyys perunan Y-virusta vastaan: mekanismit ja riskit
Resumo:
Physiol Meas. 2007 Oct;28(10):1189-200. Epub 2007 Sep 18.
Resumo:
Geokemi och isotopsammansättningarna hos ca 1,8 Ga (miljarder år) gamla mafiska bergartsintrusioner studerades i två huvudområden: i) Transskandinaviska magmatiska bältet (TMB) i Bergslagen, Småland och Blekinge, södra Sverige, inklusive några prov från det ca 1,87 Ga gamla Hedesunda-komplexet i östra Bergslagen, samt ii) mindre, postkollisionala komplex i södra Finland och ryska Karelen. I det senare fallet var även tillhörande granitoider inkluderade i studierna. TMB-bergarterna skiljer sig avsevärt i utvecklingsgrad och omfattar sammansättningsmässigt bergarter från ultramafiter till kvartsdioriter. Dessa bergarters geokemi är kännetecknande för kontinentala öbågar. För sydligaste TMB och Hedesunda antyder geokemin en något mera oceanisk öbågekaraktär. Tillsammans med tidigare data antyder de av Rutanen analyserade Nd- och Sr-isotopförhållanden för TMB en ’milt utarmad’ mantelsammansättning. De mafiska bergarterna i södra Finland och ryska Karelen varierar från ultramafiska till monzodioritiska, men med avsevärt högre alkalihalter jämfört med TMB. Källan för all den studerade mafiska magmatismen kan beskrivas som en utarmad mantel som i varierande grad påverkats av fluider och smältor ur subducerande litosfärplattor. Geokemin antyder infiltrering och påverkning av H2O-dominerande fluider i övre manteln för TMB. Den mafiska ca 1,8 Ga gamla magmatismen österut avspeglar en ökande påverkan av sedimentderiverade karbonatfluider och smältor inom allt djupare mantelområden. Denna subduktionsrelaterade mantelanrikning skedde under den föregående öbågeutvecklingen i södra delarna av Finland och Sverige, samt ryska Karelen. Geokemin för en grupp granitoider, associerade med de ca 1,8 Ga gamla intrusionerna i södra Finland visar både vulkanisk öbåge och synkollisional granitoidkaraktär. Denna grupp har ett blandat magmatiskt och sedimentärt Svekofenniskt ursprung, vilket kan antas p.g.a. deras Nd- och Sr-isotopförhållanden. En annan grupp av granitoider ligger geokemiskt mellan vulkanisk öbåge- och intraplatt-granitoider, och har magmatiskt ursprung. Geokemin och isotoperna hos dessa intrusioner kan förklaras med hybridisering mellan de kraftigt anrikade, mantelderiverade magmorna, och granitmagmor från den äldre skorpan. Den ca 1,8 Ga gamla TMB-magmatismen i Sverige skedde vid sammanslutning av kontinentalrandbågar, med kontinuerlig subduktion mot öster i Bergslagen, och mot norr i de sydligare delarna. Samtidigt i öster intruderade de postkollisionala intrusionerna i skorpan omedelbart efter kollisionen med den Volgo-Sarmatiska kontinenten från sydost. Denna invecklade paleotektoniska konfiguration orsakade en tektonisk regim där litosfäriska mantelkällor levererade de starkt anrikade magmorna, vilkas uppstigning troligen möjliggjordes av djupgående postkollisionala skjuvzoner. Intrusionerna orsakade uppsmältning av den omgivande skorpan, vilket framkallade den associerade granitoidmagmatismen.
Resumo:
Silica based biomaterials, such as melt-derived bioactive glasses and sol-gel glasses, have been used for a long time in bone healing applications because of their ability to form hydroxyapatite and to stimulate stem cell proliferation and differentiation. In this study, bone marrow derived cells were cultured with bioactive glass and sol-gel silica, and seeded into porous polymer composite scaffolds that were then implanted femorally and subcutaneously in rats to monitor their migration inside host tissue. Bone marrow derived cells were also injected intraperitoneally. Transplanted cells migrated to various tissues inside the host, including the lung, liver spleen, thymus and bone marrow. The method of transplantation affected the time frame of cell migration, with intraperitoneal injection being the fastest and femoral implantation the slowest, but not the target tissues of migration. Transplanted donor cells had a limited lifetime in the host and were later eliminated from all tested tissues. Bioactive glass, however, affected the implanted cells negatively. When it was present in the scaffold no donor cells were found in any of the tested host tissues. Bioactive glass S53P4 was found to support both osteoblastic and osteoclastic phenotype of bone marrow derived cells, but it was resistant to the resorbing effect of osteoclastic bone marrow derived cells, showing that bioactive glass is rather dissolved through physicochemical reactions than resorbed by cells. Fast-dissolving silica sol gel in microparticulate form was found to increase collagen formation by bone marrow derived cells, while slow dissolving silica microparticles enhanced their proliferation, suggesting that the dissolution rate of silica controls the response of bone marrow derived cells.
Resumo:
The objective of the thesis is to examine the current state of risk management and to determine an appropriate risk management policy for commercial property derived risks in the Russian branch of a Finnish retail trade company. The employed research methodologies are comparative in-depth interviews and empirical value at risk analysis, including portfolio risk decomposition to determine the inter-currency characteristics. For a multinational retail trade company, the commercial property derived risks open up as a diverse combination of financial and non-financial risks with four distinctive interest groups. The research results indicate that geographical diversification across currency regimes provides diversification benefits. The Russian ruble is the most significant single risk component when considering the net investments outside the euro-zone. Decreasing the Russian ruble and Swedish krona exposures are the most effective methods to reduce translation derived risk. Exchange rate volatility varies over time according to idiosyncratic currency regime characteristics, and cost-effective risk management requires comprehensive analysis of the business environment. Profound and proactive risk management methods are found to be pivotal for companies with cross-border operations in order to succeed among international competitors.
Resumo:
This thesis is based on computational chemistry studies on lignans, focusing on the naturally occurring lignan hydroxymatairesinol (HMR) (Papers I II) and on TADDOL-like conidendrin-based chiral 1,4-diol ligands (LIGNOLs) (Papers III V). A complete quantum chemical conformational analysis on HMR was previously conducted by Dr. Antti Taskinen. In the works reported in this thesis, HMR was further studied by classical molecular dynamics (MD) simulations in aqueous solution including torsional angle analysis, quantum chemical solvation e ect study by the COnductorlike Screening MOdel (COSMO), and hydrogen bond analysis (Paper I), as well as from a catalytic point of view including protonation and deprotonation studies at di erent levels of theory (Paper II). The computational LIGNOL studies in this thesis constitute a multi-level deterministic structural optimization of the following molecules: 1,1-diphenyl (2Ph), two diastereomers of 1,1,4-triphenyl (3PhR, 3PhS), 1,1,4,4-tetraphenyl (4Ph) and 1,1,4,4-tetramethyl (4Met) 1,4-diol (Paper IV) and a conformational solvation study applying MD and COSMO (Paper V). Furthermore, a computational study on hemiketals in connection with problems in the experimental work by Docent Patrik Eklund's group synthesizing the LIGNOLs based on natural products starting from HMR, is shortly described (Paper III).
Resumo:
Utilization of biomass-based raw materials for the production of chemicals and materials is gaining an increasing interest. Due to the complex nature of biomass, a major challenge in its refining is the development of efficient fractionation and purification processes. Preparative chromatography and membrane filtration are selective, energy-efficient separation techniques which offer a great potential for biorefinery applications. Both of these techniques have been widely studied. On the other hand, only few process concepts that combine the two methods have been presented in the literature. The aim of this thesis was to find the possible synergetic effects provided by combining chromatographic and membrane separations, with a particular interest in biorefinery separation processes. Such knowledge could be used in the development of new, more efficient separation processes for isolating valuable compounds from complex feed solutions that are typical for the biorefinery environment. Separation techniques can be combined in various ways, from simple sequential coupling arrangements to fully-integrated hybrid processes. In this work, different types of combined separation processes as well as conventional chromatographic separation processes were studied for separating small molecules such as sugars and acids from biomass hydrolysates and spent pulping liquors. The combination of chromatographic and membrane separation was found capable of recovering high-purity products from complex solutions. For example, hydroxy acids of black liquor were successfully recovered using a novel multistep process based on ultrafiltration and size-exclusion chromatography. Unlike any other separation process earlier suggested for this challenging separation task, the new process concept does not require acidification pretreatment, and thus it could be more readily integrated into a pulp-mill biorefinery. In addition to the combined separation processes, steady-state recycling chromatography, which has earlier been studied for small-scale separations of high-value compounds only, was found a promising process alternative for biorefinery applications. In comparison to conventional batch chromatography, recycling chromatography provided higher product purity, increased the production rate and reduced the chemical consumption in the separation of monosaccharides from biomass hydrolysates. In addition, a significant further improvement in the process performance was obtained when a membrane filtration unit was integrated with recycling chromatography. In the light of the results of this work, separation processes based on combining membrane and chromatographic separations could be effectively applied for different biorefinery applications. The main challenge remains in the development of inexpensive separation materials which are resistant towards harsh process conditions and fouling.
Resumo:
More discussion is required on how and which types of biomass should be used to achieve a significant reduction in the carbon load released into the atmosphere in the short term. The energy sector is one of the largest greenhouse gas (GHG) emitters and thus its role in climate change mitigation is important. Replacing fossil fuels with biomass has been a simple way to reduce carbon emissions because the carbon bonded to biomass is considered as carbon neutral. With this in mind, this thesis has the following objectives: (1) to study the significance of the different GHG emission sources related to energy production from peat and biomass, (2) to explore opportunities to develop more climate friendly biomass energy options and (3) to discuss the importance of biogenic emissions of biomass systems. The discussion on biogenic carbon and other GHG emissions comprises four case studies of which two consider peat utilization, one forest biomass and one cultivated biomasses. Various different biomass types (peat, pine logs and forest residues, palm oil, rapeseed oil and jatropha oil) are used as examples to demonstrate the importance of biogenic carbon to life cycle GHG emissions. The biogenic carbon emissions of biomass are defined as the difference in the carbon stock between the utilization and the non-utilization scenarios of biomass. Forestry-drained peatlands were studied by using the high emission values of the peatland types in question to discuss the emission reduction potential of the peatlands. The results are presented in terms of global warming potential (GWP) values. Based on the results, the climate impact of the peat production can be reduced by selecting high-emission-level peatlands for peat production. The comparison of the two different types of forest biomass in integrated ethanol production in pulp mill shows that the type of forest biomass impacts the biogenic carbon emissions of biofuel production. The assessment of cultivated biomasses demonstrates that several selections made in the production chain significantly affect the GHG emissions of biofuels. The emissions caused by biofuel can exceed the emissions from fossil-based fuels in the short term if biomass is in part consumed in the process itself and does not end up in the final product. Including biogenic carbon and other land use carbon emissions into the carbon footprint calculations of biofuel reveals the importance of the time frame and of the efficiency of biomass carbon content utilization. As regards the climate impact of biomass energy use, the net impact on carbon stocks (in organic matter of soils and biomass), compared to the impact of the replaced energy source, is the key issue. Promoting renewable biomass regardless of biogenic GHG emissions can increase GHG emissions in the short term and also possibly in the long term.
Resumo:
This thesis studies the use of machine vision in RDF quality assurance and manufacturing. Currently machine vision is used in recycling and material detection and some commer- cial products are available in the market. In this thesis an on-line machine vision system is proposed for characterizing particle size. The proposed machine vision system is based on the mapping between image segmenta- tion and the ground truth of the particle size. The results shows that the implementation of such machine vision system is feasible.