8 resultados para sodium bicarbonate
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The major type of non-cellulosic polysaccharides (hemicelluloses) in softwoods, the partly acetylated galactoglucomannans (GGMs), which comprise about 15% of spruce wood, have attracted growing interest because of their potential to become high-value products with applications in many areas. The main objective of this work was to explore the possibilities to extract galactoglucomannans in native, polymeric form in high yield from spruce wood with pressurised hot-water, and to obtain a deeper understanding of the process chemistry involved. Spruce (Picea abies) chips and ground wood particles were extracted using an accelerated solvent extractor (ASE) in the temperature range 160 – 180°C. Detailed chemical analyses were done on both the water extracts and the wood residues. As much as 80 – 90% of the GGMs in spruce wood, i.e. about 13% based on the original wood, could be extracted from ground spruce wood with pure water at 170 – 180°C with an extraction time of 60 min. GGMs comprised about 75% of the extracted carbohydrates and about 60% of the total dissolved solids. Other substances in the water extracts were xylans, arabinogalactans, pectins, lignin and acetic acid. The yields from chips were only about 60% of that from ground wood. Both the GGMs and other non-cellulosic polysaccharides were extensively hydrolysed at severe extraction conditions when pH dropped to the level of 3.5. Addition of sodium bicarbonate increased the yields of polymeric GGMs at low additions, 2.5 – 5 mM, where the end pH remained around 3.9. However, at higher addition levels the yields decreased, mainly because the acetyl groups in GGMs were split off, leading to a low solubility of GGMs. Extraction with buffered water in the pH range 3.8 – 4.4 gave similar yields as with plain water, but gave a higher yield of polymeric GGMs. Moreover, at these pH levels the hydrolysis of acetyl groups in GGMs was significantly inhibited. It was concluded that hot-water extraction of polymeric GGMs in good yields (up to 8% of wood) demands appropriate control of pH, in a narrow range about 4. These results were supported by a study of hydrolysis of GGM at constant pH in the range of 3.8 – 4.2 where a kinetic model for degradation of GGM was developed. The influence of wood particle size on hot-water extraction was studied with particles in the range of 0.1 – 2 mm. The smallest particles (< 0.1 mm) gave 20 – 40% higher total yield than the coarsest particles (1.25 – 2 mm). The difference was greatest at short extraction times. The results indicated that extraction of GGMs and other polysaccharides is limited mainly by the mass transfer in the fibre wall, and for coarse wood particles also in the wood matrix. Spruce sapwood, heartwood and thermomechnical pulp were also compared, but only small differences in yields and composition of extracts were found. Two methods for isolation and purification of polymeric GGMs, i.e. membrane filtration and precipitation in ethanol-water, were compared. Filtration through a series of membranes with different pore sizes separated GGMs of different molar masses, from polymers to oligomers. Polysaccharides with molar mass higher than 4 kDa were precipitated in ethanol-water. GGMs comprised about 80% of the precipitated polysaccharides. Other polysaccharides were mainly arabinoglucuronoxylans and pectins. The ethanol-precipitated GGMs were by 13C NMR spectroscopy verified to be very similar to GGMs extracted from spruce wood in low yield at a much lower temperature, 90°C. The obtained large body of experimental data could be utilised for further kinetic and economic calculations to optimise technical hot-water extractionof softwoods.
Resumo:
Selostus: Natrium- ja kaliumlannoituksen vaikutus timotein ravintoarvoon
Resumo:
Selostus: Natriumpitoisuuden pienentäminen lihavalmisteissa korvaamalla natriumfosfaatti kaliumfosfaatilla
Resumo:
Kuudenarvoista kromia käytetään natriumkloraatin valmistuksessa prosessin tuotantotehokkuuden ja turvallisuuden parantamiseksi. Kromia kuitenkin poistuu prosessista muutamaa reittiä pitkin. Koska kuuudenarvoisella kromilla on syöpää aiheuttavia, mutageenisiä sekä lisääntymiselle myrkyllisiä ominaisuuksia, olisi tärkeää ymmärtää, miten kromi kulkeutuu prosessin eri osiin, ja kuinka paljon sitä poistuu prosessista. Tämä on tärkeää, jotta osataan hallita kromin käytöstä aiheutuvat riskit, sekä toisaalta myös tehostaa kromin käyttöä prosessissa. Työn tarkoituksena oli tuottaa tietoa kromin käytöstä natriumkloraattiprosessissa. Työssä tutkittiin kromitasetta prosessin keskeisimmissä yksikköoperaatioissa. Myös kromin saostumista katodien pinnalle arvioitiin määrällisesti. Eri prosessinäytteistä tutkittiin lisäksi kromin hapetusasteita. Edellä mainittuja tutkimuskohteita varten määritettiin prosessinäytteiden kromipitoisuus. Eri prosessioperaatioille suoritettiin lisäksi taselaskelmat. Työn tuloksena esitettiin kromitase sekä yksikköoperaatioille että koko prosessille. Erinäisten epätarkkuustekijöiden vuoksi tasetta ei kuitenkaan pystytty määrittämään halutulla tarkkuudella, ja siksi työssä esitettyä tasetta voidaan pitää vain suuntaa antavana laskelmana. Katodien pinnalle saostunutta kromin määrää pidettiin kuitenkin oikean suuruusluokan tuloksena. Prosessinäytteiden hapetusasteita ei voitu arvioida, sillä saadut kokonaiskromitulokset eivät olleet täysin luotettavia. Huolimatta tulosten epätarkkuudesta, työ tuotti tärkeää tietoa prosessin toiminnasta kromin suhteen. Työtä voidaan hyödyntää jatkossa monin tavoin prosessin kromitaseen seurannassa.
Resumo:
Since cellulose is a linear macromolecule it can be used as a material for regenerated cellulose fiber products e.g. in textile fibers or film manufacturing. Cellulose is not thermoformable, thus the manufacturing of these regenerated fibers is mainly possible through dissolution processes preceding the regeneration process. However, the dissolution of cellulose in common solvents is hindered due to inter- and intra-molecular hydrogen bonds in the cellulose chains, and relatively high crystallinity. Interestingly at subzero temperatures relatively dilute sodium hydroxide solutions can be used to dissolve cellulose to a certain extent. The objective of this work was to investigate the possible factors that govern the solubility of cellulose in aqueous NaOH and the solution stability. Cellulose-NaOH solutions have the tendency to form a gel over time and at elevated temperature, which creates challenges for further processing. The main target of this work was to achieve high solubility of cellulose in aqueous NaOH without excessively compromising the solution stability. In the literature survey an overview of the cellulose dissolution is given and possible factors contributing to the solubility and solution properties of cellulose in aqueous NaOH are reviewed. Furthermore, the concept of solution rheology is discussed. In the experimental part the focus was on the characterization of the used materials and properties of the prepared solutions mainly concentrating on cellulose solubility and solution stability.
Resumo:
The aim of this thesis is to define effects of lignin separation process on Pulp mill chemical balance especially on sodium/sulphur-balance. The objective is to develop a simulation model with WinGEMS Process Simulator and use that model to simulate the chemical balances and process changes. The literature part explains what lignin is and how kraft pulp is produced. It also introduces to the methods that can be used to extract lignin from black liquor stream and how those methods affect the pulping process. In experimental part seven different cases are simulated with the created simulation model. The simulations are based on selected reference mill that produces 500 000 tons of bleached air-dried (90 %) pulp per year. The simulations include the chemical balance calculation and the estimated production increase. Based on the simulations the heat load of the recovery boiler can be reduced and the pulp production increased when lignin is extracted. The simulations showed that decreasing the waste acid stream intake from the chlorine dioxide plant is an effective method to control the sulphidity level when about 10 % of lignin is extracted. With higher lignin removal rates the in-mill sulphuric acid production has been discovered to be a better alternative to the sulphidity control.