30 resultados para selection methods

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, feature selection in classification based problems is highlighted. The role of feature selection methods is to select important features by discarding redundant and irrelevant features in the data set, we investigated this case by using fuzzy entropy measures. We developed fuzzy entropy based feature selection method using Yu's similarity and test this using similarity classifier. As the similarity classifier we used Yu's similarity, we tested our similarity on the real world data set which is dermatological data set. By performing feature selection based on fuzzy entropy measures before classification on our data set the empirical results were very promising, the highest classification accuracy of 98.83% was achieved when testing our similarity measure to the data set. The achieved results were then compared with some other results previously obtained using different similarity classifiers, the obtained results show better accuracy than the one achieved before. The used methods helped to reduce the dimensionality of the used data set, to speed up the computation time of a learning algorithm and therefore have simplified the classification task

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Personalized medicine will revolutionize our capabilities to combat disease. Working toward this goal, a fundamental task is the deciphering of geneticvariants that are predictive of complex diseases. Modern studies, in the formof genome-wide association studies (GWAS) have afforded researchers with the opportunity to reveal new genotype-phenotype relationships through the extensive scanning of genetic variants. These studies typically contain over half a million genetic features for thousands of individuals. Examining this with methods other than univariate statistics is a challenging task requiring advanced algorithms that are scalable to the genome-wide level. In the future, next-generation sequencing studies (NGS) will contain an even larger number of common and rare variants. Machine learning-based feature selection algorithms have been shown to have the ability to effectively create predictive models for various genotype-phenotype relationships. This work explores the problem of selecting genetic variant subsets that are the most predictive of complex disease phenotypes through various feature selection methodologies, including filter, wrapper and embedded algorithms. The examined machine learning algorithms were demonstrated to not only be effective at predicting the disease phenotypes, but also doing so efficiently through the use of computational shortcuts. While much of the work was able to be run on high-end desktops, some work was further extended so that it could be implemented on parallel computers helping to assure that they will also scale to the NGS data sets. Further, these studies analyzed the relationships between various feature selection methods and demonstrated the need for careful testing when selecting an algorithm. It was shown that there is no universally optimal algorithm for variant selection in GWAS, but rather methodologies need to be selected based on the desired outcome, such as the number of features to be included in the prediction model. It was also demonstrated that without proper model validation, for example using nested cross-validation, the models can result in overly-optimistic prediction accuracies and decreased generalization ability. It is through the implementation and application of machine learning methods that one can extract predictive genotype–phenotype relationships and biological insights from genetic data sets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Imatra Steel Oy Ab:n Imatran terästehtaan tuotantonopeudet ja -määrät ovat nousseet selvästi alkuperäistä tasoa korkeammiksi toteutettujen investointien ja käytettävyyden parantamisen myötä. Lisäksi yrityson asettanut yhä tiukemmat käytettävyystavoitteet. Ehkäisevän kunnossapitojärjestelmän käyttöaste ei ole riittävä, jotta asetettuihin tavoitteisiin päästäisiin. Kunnossapidon rooli on myös muuttunut tärkeäksi kilpailutekijäksi jolla voidaan suoraan vaikuttaa yrityksen kilpailukykyyn. Työn avulla pyritään helpottamaan tulevaa systemaattista yrityksen koko laitekannan ehkäisevien kunnossapitotoimenpiteiden läpikäyntiä. Tässä työssä pyritään etsimään sopivia työkaluja ehkäisevän kunnossapidon suunnittelulle ja kehittämään ehkäisevää kunnossapitoa. Työssä on tavoitteisiin pääsemiseksi tutkittu erilaisia kunnossapitostrategioita, kunnossapitostrategioiden valintamenetelmiä, tunnuslukuja, vikaantumista ja kriittisyysanalyysejä. Yrityksen ehkäisevän kunnossapidon nykytilaa ja ongelmakohtia selvitettiin haastattelututkimuksen avulla. Työssä on kehitetty erilaisten kunnossapitostrategioiden valintamenetelmien pohjalta oma laitekannan kriittisyyden huomioiva menetelmä ehkäisevän kunnossapidon kohteiden päivittämiselle. Menetelmän helppokäyttöisyyttä on lisätty kehittämällä menetelmälle suunnittelukortti. Lisäksi työssä on esitelty muita ehkäisevään kunnossapitoon liittyviä kehityskohteita.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Työn tavoitteena oli laatia Tieliikelaitoksen tutkimus- ja kehitysprojektien kannattavuuden arvioinnin toimintamalli ja laskentamalli. Työn tavoitteena oli myös kehittääTieliikelaitoksen tutkimus- ja kehitysprojektin kannattavuuden arviointia ja tuottaa informaatiota t&k -projektien valintatilanteisiin. Työ koostuu teoriasta, haastatteluista, t&k -projektien kannattavuuden arvioinnin toimintamallista ja laskentamallista. Työssä käsitellään kirjallisuudesta ja haastatteluista esille tulleita käytäntöjä ja menetelmiä, joiden avulla tutkimus- ja kehitysprojektien kannattavuutta voidaan arvioida. Työssä kuvataan myös arviointimenetelmien käyttöä t&k -prosessin eri vaiheissa. Työn merkittävimpinä tuloksina ovat laaditut toimintamalli ja laskentamalli Tieliikelaitoksen t&k -projektien kannattavuuden arviointiin. Lisäksi työssä tuloksena oli, että arviointimenetelmiä tulee käyttää monipuolisesti ja projektien arviointi tulee olla jatkuvaa. Projektien kannattavuuden arviointi ei voi perustua pelkästään taloudellisiin menetelmiin vaan arviointiin tulee valita sekä taloudellisia että laadullisia menetelmiä. Projektien jatkuvalla arvioinnilla ja arviointimenetelmien käytön monipuolisuudella varmistetaan oikeiden ja kannattavien projektien toteuttaminen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Testaustapausten valitseminen on testauksessa tärkeää, koska kaikkia testaustapauksia ei voida testata aika- ja raharajoitteiden takia. Testaustapausten valintaan on paljon eri menetelmiä joista eniten esillä olevat ovat malleihin perustuva valinta, kombinaatiovalinta ja riskeihin perustuva valinta. Kaikkiin edellä mainittuihin menetelmiin testaustapaukset luodaan ohjelman spesifikaation perusteella. Malleihin perustuvassa menetelmässä käytetään hyväksi ohjelman toiminnasta olevia malleja, joista valitaan tärkeimmät testattavaksi. Kombinaatiotestauksessa testitapaukset on muodostettu ominaisuuspareina jolloin yhden parin testaamisesta päätellään kahden ominaisuuden toiminta. Kombinaatiotestaus on tehokas löytämään virheitä, jotka johtuvat yhdestä tai kahdesta tekijästä. Riskeihin perustuva testaus pyrkii arvioimaan ohjelman riskejä ja valitsemaan testitapaukset niiden perusteella. Kaikissa menetelmissä priorisointi on tärkeässä roolissa, jotta testauksesta saadaan riittävä luotettavuus ilman kustannusten nousua.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hoitotyön koulutukseen pyritään valitsemaan alalle soveltuvia, motivoituneita sekä teoreettisissa ja kliinisissä opinnoissa menestyviä opiskelijoita. Tämän seurantatutkimuksen tarkoituksena oli vertailla soveltuvuuskokeella ja kirjallisella kokeella valittujen hoitotyön opiskelijoiden osaamista ja opiskelumotivaatiota. Tutkimuksen tavoitteena oli tehdä tutkimustulosten perusteella hoitotyön koulutuksen opiskelijavalintoihin liittyviä kehittämisehdotuksia. Tutkimuksen kohderyhmänä olivat yhteen ammattikorkeakouluun syksyn 2002 ja syksyn 2004 välisenä aikana hoitotyön koulutukseen kahdella eri valintakoemenetelmällä valitut hoitotyön opiskelijat (N=626) (sairaanhoitotyö, terveydenhoitotyö, kätilötyö). Opiskelijaryhmistä muodostettiin kaksi kohorttia valintakoemenetelmän perusteella: soveltuvuuskoe (VAL1, N=368) ja kirjallinen koe (VAL2, N=258). Seurantatutkimuksen aineisto kerättiin opiskelijoiden opintorekisteristä sekä kahdella strukturoidulla mittarilla, joilla kartoitettiin hoitotyön opiskelijoiden itsearvioitua hoitotyön osaamista (OSAA-mittari) ja opiskelumotivaatiota (MOTI-mittari). Seurantatutkimuksen aineistonkeruu ajoittui opiskelijoiden kolmannelle lukukaudella (1. mittaus, 2004‒2006, VAL1 n=234, VAL2 n=126) ja valmistumisvaiheeseen (2. mittaus, 2006‒2009, VAL1 n=149, VAL2 n=108). Ensimmäisen mittauksen vastausprosentti oli 75,0 % ja toisen mittauksen 92,4 %. Aineistojen analysoinnissa käytettiin pitkittäistutkimukseen soveltuvia monimuuttujamenetelmiä. Kahdella valintakoemenetelmällä valikoitui pienistä eroista huolimatta osaamiseltaan ja opiskelumotivaatioltaan hyvin samanlaisia opiskelijoita. Soveltuvuuskokeella valitut opiskelijat kokivat ryhmän kannustavuuden vahvemmaksi valmistumisvaiheessa kuin kirjallisella kokeella valitut. Kirjallisella kokeella valittujen opiskelijoiden kolmannen lukukauden arvosanoihin perustuva osaaminen oli parempaa kuin soveltuvuuskokeella valittujen opiskelijoiden. Suuntautumisvaihtoehto, hoitoalan työkokemus, peruskoulutus ja hakusija olivat merkittävimmin yhteydessä opiskelijoiden osaamiseen ja opiskelumotivaatioon. Valintakoemenetelmä selitti eniten opiskelijoiden osaamisessa ja opiskelumotivaatiossa ilmenneitä eroja, joskin selitysosuudet jäivät alhaisiksi. Kehittämisehdotukset kohdistuvat valintakoemenetelmien kehittämiseen ja säännölliseen arviointiin sekä alalle motivoituneisuuden määrittelyyn ja mittaamisen kehittämiseen. Jatkotutkimusaiheina ehdotetaan eri valintakoemenetelmien testaamista ja tutkimuksessa käytettyjen mittareiden edelleen kehittämistä.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Drying is a major step in the manufacturing process in pharmaceutical industries, and the selection of dryer and operating conditions are sometimes a bottleneck. In spite of difficulties, the bottlenecks are taken care of with utmost care due to good manufacturing practices (GMP) and industries' image in the global market. The purpose of this work is to research the use of existing knowledge for the selection of dryer and its operating conditions for drying of pharmaceutical materials with the help of methods like case-based reasoning and decision trees to reduce time and expenditure for research. The work consisted of two major parts as follows: Literature survey on the theories of spray dying, case-based reasoning and decision trees; working part includes data acquisition and testing of the models based on existing and upgraded data. Testing resulted in a combination of two models, case-based reasoning and decision trees, leading to more specific results when compared to conventional methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In today's logistics environment, there is a tremendous need for accurate cost information and cost allocation. Companies searching for the proper solution often come across with activity-based costing (ABC) or one of its variations which utilizes cost drivers to allocate the costs of activities to cost objects. In order to allocate the costs accurately and reliably, the selection of appropriate cost drivers is essential in order to get the benefits of the costing system. The purpose of this study is to validate the transportation cost drivers of a Finnish wholesaler company and ultimately select the best possible driver alternatives for the company. The use of cost driver combinations as an alternative is also studied. The study is conducted as a part of case company's applied ABC-project using the statistical research as the main research method supported by a theoretical, literature based method. The main research tools featured in the study include simple and multiple regression analyses, which together with the literature and observations based practicality analysis forms the basis for the advanced methods. The results suggest that the most appropriate cost driver alternatives are the delivery drops and internal delivery weight. The possibility of using cost driver combinations is not suggested as their use doesn't provide substantially better results while increasing the measurement costs, complexity and load of use at the same time. The use of internal freight cost drivers is also questionable as the results indicate weakening trend in the cost allocation capabilities towards the end of the period. Therefore more research towards internal freight cost drivers should be conducted before taking them in use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the dissertation is to increase understanding and knowledge in the field where group decision support system (GDSS) and technology selection research overlap in the strategic sense. The purpose is to develop pragmatic, unique and competent management practices and processes for strategic technology assessment and selection from the whole company's point of view. The combination of the GDSS and technology selection is approached from the points of view of the core competence concept, the lead user -method, and different technology types. In this research the aim is to find out how the GDSS contributes to the technology selection process, what aspects should be considered when selecting technologies to be developed or acquired, and what advantages and restrictions the GDSS has in the selection processes. These research objectives are discussed on the basis of experiences and findings in real life selection meetings. The research has been mainly carried outwith constructive, case study research methods. The study contributes novel ideas to the present knowledge and prior literature on the GDSS and technology selection arena. Academic and pragmatic research has been conducted in four areas: 1) the potential benefits of the group support system with the lead user -method,where the need assessment process is positioned as information gathering for the selection of wireless technology development projects; 2) integrated technology selection and core competencies management processes both in theory and in practice; 3) potential benefits of the group decision support system in the technology selection processes of different technology types; and 4) linkages between technology selection and R&D project selection in innovative product development networks. New type of knowledge and understanding has been created on the practical utilization of the GDSS in technology selection decisions. The study demonstrates that technology selection requires close cooperation between differentdepartments, functions, and strategic business units in order to gather the best knowledge for the decision making. The GDSS is proved to be an effective way to promote communication and co-operation between the selectors. The constructs developed in this study have been tested in many industry fields, for example in information and communication, forest, telecommunication, metal, software, and miscellaneous industries, as well as in non-profit organizations. The pragmatic results in these organizations are some of the most relevant proofs that confirm the scientific contribution of the study, according to the principles of the constructive research approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Superheater corrosion causes vast annual losses for the power companies. With a reliable corrosion prediction method, the plants can be designed accordingly, and knowledge of fuel selection and determination of process conditions may be utilized to minimize superheater corrosion. Growing interest to use recycled fuels creates additional demands for the prediction of corrosion potential. Models depending on corrosion theories will fail, if relations between the inputs and the output are poorly known. A prediction model based on fuzzy logic and an artificial neural network is able to improve its performance as the amount of data increases. The corrosion rate of a superheater material can most reliably be detected with a test done in a test combustor or in a commercial boiler. The steel samples can be located in a special, temperature-controlled probe, and exposed to the corrosive environment for a desired time. These tests give information about the average corrosion potential in that environment. Samples may also be cut from superheaters during shutdowns. The analysis ofsamples taken from probes or superheaters after exposure to corrosive environment is a demanding task: if the corrosive contaminants can be reliably analyzed, the corrosion chemistry can be determined, and an estimate of the material lifetime can be given. In cases where the reason for corrosion is not clear, the determination of the corrosion chemistry and the lifetime estimation is more demanding. In order to provide a laboratory tool for the analysis and prediction, a newapproach was chosen. During this study, the following tools were generated: · Amodel for the prediction of superheater fireside corrosion, based on fuzzy logic and an artificial neural network, build upon a corrosion database developed offuel and bed material analyses, and measured corrosion data. The developed model predicts superheater corrosion with high accuracy at the early stages of a project. · An adaptive corrosion analysis tool based on image analysis, constructedas an expert system. This system utilizes implementation of user-defined algorithms, which allows the development of an artificially intelligent system for thetask. According to the results of the analyses, several new rules were developed for the determination of the degree and type of corrosion. By combining these two tools, a user-friendly expert system for the prediction and analyses of superheater fireside corrosion was developed. This tool may also be used for the minimization of corrosion risks by the design of fluidized bed boilers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study explores the early phases of intercompany relationship building, which is a very important topic for purchasing and business development practitioners as well as for companies' upper management. There is a lot ofevidence that a proper engagement with markets increases a company's potential for achieving business success. Taking full advantage of the market possibilities requires, however, a holistic view of managing related decision-making chain. Most literature as well as the business processes of companies are lacking this holism. Typically they observe the process from the perspective of individual stages and thus lead to discontinuity and sub-optimization. This study contains a comprehensive introduction to and evaluation of literature related to various steps of the decision-making process. It is studied from a holistic perspective ofdetermining a company's vertical integration position within its demand/ supplynetwork context; translating the vertical integration objectives to feasible strategies and objectives; and operationalizing the decisions made through engagement with collaborative intercompany relationships. The empirical part of the research has been conducted in two sections. First the phenomenon of intercompany engagement is studied using two complementary case studies. Secondly a survey hasbeen conducted among the purchasing and business development managers of several electronics manufacturing companies, to analyze the processes, decision-makingcriteria and success factors of engagement for collaboration. The aim has been to identify the reasons why companies and their management act the way they do. As a combination of theoretical and empirical research an analysis has been produced of what would be an ideal way of engaging with markets. Based on the respective findings the study concludes by proposing a holistic framework for successful engagement. The evidence presented throughout the study demonstrates clear gaps, discontinuities and limitations in both current research and in practical purchasing decision-making chains. The most significant discontinuity is the identified disconnection between the supplier selection process and related criteria and the relationship success factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agile software development methods are attempting to provide an answer to the software development industry's need of lighter weight, more agile processes that offer the possibility to react to changes during the software development process. The objective of this thesis is to analyze and experiment the possibility of using agile methods or practices also in small software projects, even in projects containing only one developer. In the practical part of the thesis a small software project was executed with some agile methods and practices that in the theoretical part of the thesis were found possible to be applied to the project. In the project a Bluetooth proxy application that is run in the S60 smartphone platform and PC was developed further to contain some new features. As a result it was found that certain agile practices can be useful even in the very small projects. The selection of the suitable practices depends on the project and the size of the project team.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tämän tutkielman tavoitteena oli määrittää uuden markkinan valinnan perusteita teolliselle tuotteelle. Tutkielma keskittyi jo tunnettuihin kansainvälisen markkinavalinnan lähestymistapoihin ja pyrki soveltamaan yhtä menetelmää käytäntöön tutkielman empiria osassa case-tutkimuksen avulla. Tutkimusote oli tutkiva, eksploratiivinen ja perustui sekundääri analyysiin. Käytetyt tiedon lähteet olivat suureksi osin sekundäärisiä tuottaen kvalitatiivista tietoa. Kuitenkin haastatteluita suoritettiin myös. Kattava kirjallisuus katsaus tunnetuista teoreettisista lähestymistavoista kansainväliseen markkinavalintaan oli osa tutkielmaa. Kolme tärkeintä lähestymistapaa esiteltiin tarkemmin. Yksi lähestymistavoista, ei-järjestelmällinen, muodosti viitekehyksen tutkielman empiria-osalle. Empiria pyrki soveltamaan yhtä ei-järjestelmällisen lähestymistavan malleista kansainvälisessä paperiteollisuudessa. Tarkoituksena oli tunnistaa kaikkein houkuttelevimmat maat mahdollisille markkinointitoimenpiteille tuotteen yhdellä loppukäyttöalueella. Tutkielmassa päädyttiin käyttämään ilmastollisia olosuhteita, siipikarjan päälukua sekä siipikarjan kasvuprosenttia suodattimina pyrittäessä vähentämään mahdollisten maiden lukumäärää. Tutkielman empiria-osa kärsi selkeästi relevantin tiedon puutteesta. Siten myös tutkielman reliabiliteetti ja validiteetti voidaan jossain määrin kyseenalaistaa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phlorotannins are the least studied group of tannins and are found only in brown algae. Hitherto the roles of phlorotannins, e.g. in plant-herbivore interactions, have been studied by quantifying the total contents of the soluble phlorotannins with a variety of methods. Little attention has been given to either quantitative variation in cell-wall-bound and exuded phlorotannins or to qualitative variation in individual compounds. A quantification procedure was developed to measure the amount of cell-wall-bound phlorotannins. The quantification of soluble phlorotannins was adjusted for both large- and small-scale samples and used to estimate the amounts of exuded phlorotannins using bladder wrack (Fucus vesiculosus) as a model species. In addition, separation of individual soluble phlorotannins to produce a phlorotannin profile from the phenolic crude extract was achieved by high-performance liquid chromatography (HPLC). Along with these methodological studies, attention was focused on the factors in the procedure which generated variation in the yield of phlorotannins. The objective was to enhance the efficiency of the sample preparation procedure. To resolve the problem of rapid oxidation of phlorotannins in HPLC analyses, ascorbic acid was added to the extractant. The widely used colourimetric method was found to produce a variation in the yield that was dependent upon the pH and concentration of the sample. Using these developed, adjusted and modified methods, the phenotypic plasticity of phlorotannins was studied with respect to nutrient availability and herbivory. An increase in nutrients decreased the total amount of soluble phlorotannins but did not affect the cell-wall-bound phlorotannins, the exudation of phlorotannins or the phlorotannin profile achieved with HPLC. The presence of the snail Thedoxus fluviatilis on the thallus induced production of soluble phlorotannins, and grazing by the herbivorous isopod Idotea baltica increased the exudation of phlorotannins. To study whether the among-population variations in phlorotannin contents arise from the genetic divergence or from the plastic response of algae, or both, algae from separate populations were reared in a common garden. Genetic variation among local populations was found in both the phlorotannin profile and the content of total phlorotannins. Phlorotannins were also genetically variable within populations. This suggests that local algal populations have diverged in their contents of phlorotannins, and that they may respond to natural selection and evolve both quantitatively and qualitatively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents new, efficient Markov chain Monte Carlo (MCMC) simulation methods for statistical analysis in various modelling applications. When using MCMC methods, the model is simulated repeatedly to explore the probability distribution describing the uncertainties in model parameters and predictions. In adaptive MCMC methods based on the Metropolis-Hastings algorithm, the proposal distribution needed by the algorithm learns from the target distribution as the simulation proceeds. Adaptive MCMC methods have been subject of intensive research lately, as they open a way for essentially easier use of the methodology. The lack of user-friendly computer programs has been a main obstacle for wider acceptance of the methods. This work provides two new adaptive MCMC methods: DRAM and AARJ. The DRAM method has been built especially to work in high dimensional and non-linear problems. The AARJ method is an extension to DRAM for model selection problems, where the mathematical formulation of the model is uncertain and we want simultaneously to fit several different models to the same observations. The methods were developed while keeping in mind the needs of modelling applications typical in environmental sciences. The development work has been pursued while working with several application projects. The applications presented in this work are: a winter time oxygen concentration model for Lake Tuusulanjärvi and adaptive control of the aerator; a nutrition model for Lake Pyhäjärvi and lake management planning; validation of the algorithms of the GOMOS ozone remote sensing instrument on board the Envisat satellite of European Space Agency and the study of the effects of aerosol model selection on the GOMOS algorithm.