23 resultados para oblique illumination
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Global illumination algorithms are at the center of realistic image synthesis and account for non-trivial light transport and occlusion within scenes, such as indirect illumination, ambient occlusion, and environment lighting. Their computationally most difficult part is determining light source visibility at each visible scene point. Height fields, on the other hand, constitute an important special case of geometry and are mainly used to describe certain types of objects such as terrains and to map detailed geometry onto object surfaces. The geometry of an entire scene can also be approximated by treating the distance values of its camera projection as a screen-space height field. In order to shadow height fields from environment lights a horizon map is usually used to occlude incident light. We reduce the per-receiver time complexity of generating the horizon map on N N height fields from O(N) of the previous work to O(1) by using an algorithm that incrementally traverses the height field and reuses the information already gathered along the path of traversal. We also propose an accurate method to integrate the incident light within the limits given by the horizon map. Indirect illumination in height fields requires information about which other points are visible to each height field point. We present an algorithm to determine this intervisibility in a time complexity that matches the space complexity of the produced visibility information, which is in contrast to previous methods which scale in the height field size. As a result the amount of computation is reduced by two orders of magnitude in common use cases. Screen-space ambient obscurance methods approximate ambient obscurance from the depth bu er geometry and have been widely adopted by contemporary real-time applications. They work by sampling the screen-space geometry around each receiver point but have been previously limited to near- field effects because sampling a large radius quickly exceeds the render time budget. We present an algorithm that reduces the quadratic per-pixel complexity of previous methods to a linear complexity by line sweeping over the depth bu er and maintaining an internal representation of the processed geometry from which occluders can be efficiently queried. Another algorithm is presented to determine ambient obscurance from the entire depth bu er at each screen pixel. The algorithm scans the depth bu er in a quick pre-pass and locates important features in it, which are then used to evaluate the ambient obscurance integral accurately. We also propose an evaluation of the integral such that results within a few percent of the ray traced screen-space reference are obtained at real-time render times.
Resumo:
Photosystem II (PSII) of oxygenic photosynthesis is susceptible to photoinhibition. Photoinhibition is defined as light induced damage resulting in turnover of the D1 protein subunit of the reaction center of PSII. Both visible and ultraviolet (UV) light cause photoinhibition. Photoinhibition induced by UV light damages the oxygen evolving complex (OEC) via absorption of UV photons by the Mn ion(s) of OEC. Under visible light, most of the earlier hypotheses assume that photoinhibition occurs when the rate of photon absorption by PSII antenna exceeds the use of the absorbed energy in photosynthesis. However, photoinhibition occurs at all light intensities with the same efficiency per photon. The aim of my thesis work was to build a model of photoinhibition that fits the experimental features of photoinhibition. I studied the role of electron transfer reactions of PSII in photoinhibition and found that changing the electron transfer rate had only minor influence on photoinhibition if light intensity was kept constant. Furthermore, quenching of antenna excitations protected less efficiently than it would protect if antenna chlorophylls were the only photoreceptors of photoinhibition. To identify photoreceptors of photoinhibition, I measured the action spectrum of photoinhibition. The action spectrum showed resemblance to the absorption spectra of Mn model compounds suggesting that the Mn cluster of OEC acts as a photoreceptor of photoinhibition under visible light, too. The role of Mn in photoinhibition was further supported by experiments showing that during photoinhibition OEC is damaged before electron transfer activity at the acceptor side of PSII is lost. Mn enzymes were found to be photosensitive under visible and UV light indicating that Mn-containing compounds, including OEC, are capable of functioning as photosensitizers both in visible and UV light. The experimental results above led to the Mn hypothesis of the mechanism of continuous-light-induced photoinhibition. According to the Mn hypothesis, excitation of Mn of OEC results in inhibition of electron donation from OEC to the oxidized primary donor P680+ both under UV and visible light. P680 is oxidized by photons absorbed by chlorophyll, and if not reduced by OEC, P680+ may cause harmful oxidation of other PSII components. Photoinhibition was also induced with intense laser pulses and it was found that the photoinhibitory efficiency increased in proportion to the square of pulse intensity suggesting that laser-pulse-induced photoinhibition is a two-photon reaction. I further developed the Mn hypothesis suggesting that the initial event in photoinhibition under both continuous and pulsed light is the same: Mn excitation that leads to the inhibition of electron donation from OEC to P680+. Under laser-pulse-illumination, another Mn-mediated inhibitory photoreaction occurs within the duration of the same pulse, whereas under continuous light, secondary damage is chlorophyll mediated. A mathematical model based on the Mn hypothesis was found to explain photoinhibition under continuous light, under flash illumination and under the combination of these two.
Resumo:
Granular flow phenomena are frequently encountered in the design of process and industrial plants in the traditional fields of the chemical, nuclear and oil industries as well as in other activities such as food and materials handling. Multi-phase flow is one important branch of the granular flow. Granular materials have unusual kinds of behavior compared to normal materials, either solids or fluids. Although some of the characteristics are still not well-known yet, one thing is confirmed: the particle-particle interaction plays a key role in the dynamics of granular materials, especially for dense granular materials. At the beginning of this thesis, detailed illustration of developing two models for describing the interaction based on the results of finite-element simulation, dimension analysis and numerical simulation is presented. The first model is used to describing the normal collision of viscoelastic particles. Based on some existent models, more parameters are added to this model, which make the model predict the experimental results more accurately. The second model is used for oblique collision, which include the effects from tangential velocity, angular velocity and surface friction based on Coulomb's law. The theoretical predictions of this model are in agreement with those by finite-element simulation. I n the latter chapters of this thesis, the models are used to predict industrial granular flow and the agreement between the simulations and experiments also shows the validation of the new model. The first case presents the simulation of granular flow passing over a circular obstacle. The simulations successfully predict the existence of a parabolic steady layer and show how the characteristics of the particles, such as coefficients of restitution and surface friction affect the separation results. The second case is a spinning container filled with granular material. Employing the previous models, the simulation could also reproduce experimentally observed phenomena, such as a depression in the center of a high frequency rotation. The third application is about gas-solid mixed flow in a vertically vibrated device. Gas phase motion is added to coherence with the particle motion. The governing equations of the gas phase are solved by using the Large eddy simulation (LES) and particle motion is predicted by using the Lagrangian method. The simulation predicted some pattern formation reported by experiment.
Resumo:
Ainetta rikkomattomien tarkastusten merkitys erityisesti valettujen kappaleiden valmistuksen yhteydessä on ratkaiseva koneenosan luotettavuuden varmistamisessa. Suurilujuuksiset kuormausnosturin kääntöpylväät ovat kriittisiä osia, joiden vaurioituminen aiheuttaa kustannuksia ja työturvallisuusriskin. Kuormainvalmistajat haluavat, että toimitetut kääntöpylväät täyttävät asetetut laatuvaatimukset, joihin kuuluu säröttömyyden varmistaminen tarkastamalla. Väsymisvaurioiden välttämiseksi kappaleiden pinnan virheettömyys on tarkastettava jollakin pintatarkastusmenetelmällä. Magneettijauhetarkastus on eräs käyttökelpoinen ja taloudellinen menetelmä kyseessä olevien teräsvalukappaleiden tarkastamisessa. Tähän työhön on koottu magneettijauhetarkastukseen (menetelmänä) liittyvää tietoa. Työssä on laadittu kääntöpylväisiin koneistuksia tekevän yrityksen käyttöön tarkastuksen yleisohje. Yrityksessä otetaan käyttöön uusi magneettijauhetarkastuslaitteisto. Tarkastusmenetelmä on fluoresoivamärkä menetelmä, jossa käytetään UV-valaistusta. Tarkastusohjeen tueksi on kuvattu vertailukuvasarja tarkastajien käyttöön. Suurin sallittava särönpituus on väsymisen kannalta tärkein yksittäinen tekijä ja siksi sen arvioinnin on oltava luotettavaa. Työturvallisuuteen on kiinnitetty erityistä huomiota, sillä asiakkaatovat usein kiinnostuneita paitsi itse tuotteesta, myös yrityksen toiminnallisesta laadusta. Yhtenä laadun mittarina voidaan pitää vahinkojen ja tapaturmien vähäisyyttä. Selkeät toimintaohjeet viestivät laatutietoisesta turvallisesta toiminnasta. Yrityksen laatukäsikirjaan on tehtävä lisäys pylväiden tarkastamisesta jatyöturvallisuudesta. Työssä on laadittu lisäyksestä ehdotus. Lisäksi työssä on pohdittu yrityksen ja työntekijöiden toimintaan liittyviä vastuukysymyksiä.
Resumo:
Laajojen pintojen kuvaaminen rajoitetussa työskentelytilassa riittävällä kuvatarkkuudella voi olla vaikeaa. Kuvaaminen on suoritettava osissa ja osat koottava saumattomaksi kokonaisnäkymäksi eli mosaiikkikuvaksi. Kuvauslaitetta käsin siirtelevän käyttäjän on saatava välitöntä palautetta, jotta mosaiikkiin ei jäisi aukkoja ja työ olisi nopeaa. Työn tarkoituksena oli rakentaa pieni, kannettava ja tarkka kuvauslaite paperi- ja painoteollisuuden tarpeisiin sekä kehittää palautteen antamiseen menetelmä, joka koostaaja esittää karkeaa mosaiikkikuvaa tosiajassa. Työssä rakennettiin kaksi kuvauslaitetta: ensimmäinen kuluttajille ja toinen teollisuuteen tarkoitetuista osista. Kuvamateriaali käsiteltiin tavallisella pöytätietokoneella. Videokuvien välinen liike laskettiin yksinkertaisella seurantamenetelmällä ja mosaiikkikuvaa koottiin kameroiden kuvanopeudella. Laskennallista valaistuksenkorjausta tutkittiin ja kehitetty menetelmä otettiin käyttöön. Ensimmäisessä kuvauslaitteessa on ongelmia valaistuksen ja linssivääristymien kanssa tuottaen huonolaatuisia mosaiikkikuvia. Toisessa kuvauslaitteessa nämä ongelmat on korjattu. Seurantamenetelmä toimii hyvin ottaen huomioon sen yksinkertaisuuden ja siihen ehdotetaan monia parannuksia. Työn tulokset osoittavat, että tosiaikainen mosaiikkikuvan koostaminen megapikselin kuvamateriaalista on mahdollista kuluttajille tarkoitetulla tietokonelaitteistolla.
Resumo:
The topic of this thesis is studying how lesions in retina caused by diabetic retinopathy can be detected from color fundus images by using machine vision methods. Methods for equalizing uneven illumination in fundus images, detecting regions of poor image quality due toinadequate illumination, and recognizing abnormal lesions were developed duringthe work. The developed methods exploit mainly the color information and simpleshape features to detect lesions. In addition, a graphical tool for collecting lesion data was developed. The tool was used by an ophthalmologist who marked lesions in the images to help method development and evaluation. The tool is a general purpose one, and thus it is possible to reuse the tool in similar projects.The developed methods were tested with a separate test set of 128 color fundus images. From test results it was calculated how accurately methods classify abnormal funduses as abnormal (sensitivity) and healthy funduses as normal (specificity). The sensitivity values were 92% for hemorrhages, 73% for red small dots (microaneurysms and small hemorrhages), and 77% for exudates (hard and soft exudates). The specificity values were 75% for hemorrhages, 70% for red small dots, and 50% for exudates. Thus, the developed methods detected hemorrhages accurately and microaneurysms and exudates moderately.
Resumo:
Värin havaitseminen on monimutkainen tapahtuma, johon vaikuttaa lukuisia tekijöitä. Havaittua väriä eli värivaikutelmaa ennustavat mallit huomioivat taustan ja valonlähteen kromaattisuus- ja intensiteettiominaisuuksia. Värejä käyttävässä teollisuudessa on tarve värien määrittelyn lisäksi mitata värieroja esimerkiksi värillisten tuotteiden laadunvalvonnassa. Värivaikutelmamalleja ja värierojenlaskentamalleja on pitkään kehitetty toisistaan erillisinä. Tässä työssä tarkastellaan värivaikutelmailmiöitä ja sekä värivaikutelma- ja värieromallien ominaisuuksia. Lisäksi selvitetään värivaikutelmamallien ja värieromallien yhteensovittamista.
Resumo:
Multispectral images are becoming more common in the field of remote sensing, computer vision, and industrial applications. Due to the high accuracy of the multispectral information, it can be used as an important quality factor in the inspection of industrial products. Recently, the development on multispectral imaging systems and the computational analysis on the multispectral images have been the focus of a growing interest. In this thesis, three areas of multispectral image analysis are considered. First, a method for analyzing multispectral textured images was developed. The method is based on a spectral cooccurrence matrix, which contains information of the joint distribution of spectral classes in a spectral domain. Next, a procedure for estimating the illumination spectrum of the color images was developed. Proposed method can be used, for example, in color constancy, color correction, and in the content based search from color image databases. Finally, color filters for the optical pattern recognition were designed, and a prototype of a spectral vision system was constructed. The spectral vision system can be used to acquire a low dimensional component image set for the two dimensional spectral image reconstruction. The data obtained by the spectral vision system is small and therefore convenient for storing and transmitting a spectral image.
Resumo:
The objective of this thesis was to study the removal of gases from paper mill circulation waters experimentally and to provide data for CFD modeling. Flow and bubble size measurements were carried out in a laboratory scale open gas separation channel. Particle Image Velocimetry (PIV) technique was used to measure the gas and liquid flow fields, while bubble size measurements were conducted using digital imaging technique with back light illumination. Samples of paper machine waters as well as a model solution were used for the experiments. The PIV results show that the gas bubbles near the feed position have the tendency to escape from the circulation channel at a faster rate than those bubbles which are further away from the feed position. This was due to an increased rate of bubble coalescence as a result of the relatively larger bubbles near the feed position. Moreover, a close similarity between the measured slip velocities of the paper mill waters and that of literature values was obtained. It was found that due to dilution of paper mill waters, the observed average bubble size was considerably large as compared to the average bubble sizes in real industrial pulp suspension and circulation waters. Among the studied solutions, the model solution has the highest average drag coefficient value due to its relatively high viscosity. The results were compared to a 2D steady sate CFD simulation model. A standard Euler-Euler k-ε turbulence model was used in the simulations. The channel free surface was modeled as a degassing boundary. From the drag models used in the simulations, the Grace drag model gave velocity fields closest to the experimental values. In general, the results obtained from experiments and CFD simulations are in good qualitative agreement.
Resumo:
Photosystem II (PSII) is susceptible to light-induced damage defined as photoinhibition. In natural conditions, plants are capable of repairing the photoinhibited PSII by on-going degradation and re-synthesis of the D1 reaction centre protein of PSII. Photoinhibition is induced by both visible and ultraviolet light and photoinhibition occurs under all light intensities with the same efficiency per photon. In my thesis work, I studied the reaction kinetics and mechanism of photoinhibition of PSII, as well as photoprotection in leaves of higher plants. Action spectroscopy was used to identify photoreceptors of photoinhibition. I found that the action spectrum of photoinhibition in vivo shows resemblance to the absorption spectra of manganese model compounds of the oxygen evolving complex (OEC) suggesting a role for manganese as a photoreceptor of photoinhibition under UV and visible light. In order to study the protective effect of non-photochemical quenching, the action spectrum was measured from leaves of wild type Arabidopsis thaliana and two mutants impaired in nonphotochemical quenching of chlorophyll a excitations. The findings of action spectroscopy and simulations of chlorophyll-based photoinhibition mechanisms suggested that quenching of antenna excitations protects less efficiently than would be expected if antenna chlorophylls were the only photoreceptors of photoinhibition. The reaction kinetics of prolonged photoinhibition was studied in leaves of Cucurbita maxima and Capsicum annuum. The results indicated that photoinhibitory decrease in both the oxygen evolution activity and ratio of variable to maximum fluorescence follows firstorder kinetics in vivo. The persistence of first-order kinetics suggests that already photoinhibited reaction centres do not protect against photoinhibition and that the mechanism of photoinhibition does not have a reversible intermediate. When Cucurbita maxima leaves were photoinhibited with saturating single-turnover flashes and continuous light, the light response curve of photoinhibition was found to be essentially a straight line with both types of illumination, suggesting that similar photoinhibition mechanisms might function during illumination with continuous light and during illumination with short flashes.
Resumo:
Tässä tutkimuksessa toteutettiin uusi versio aikaisemmin tuotetusta työkalusta merkintöjen tekemiseksi pääasiassa silmänpohjakuviin. Tarkoituksena oli toteuttaa kuvankäsittelyyn perustuvia aputoimintoja kuvien valaistuksenkorjaamiseksi, sekä korostaa lääkärille mahdollisia diabeettiseen retinopatiaan kuuluvia löydöksiä. Kuvien annotoinnin helpottamiseksi toteutettiin kaksi menetelmää valaistuksenkorjaamiseksi: yksiulotteinen käyrämenetelmä sekä värikanavien ominaisuuksia hyödyntävä menetelmä. Kuvien annotoinin helpottamiseksi toteutettiin kuvan vihreän kanavan jakaumaan perustuva aputoiminto, joka pyrkii korostamaan mahdollisia diabeettiseen retinopatiaan kuuluvia löydöksiä.
Resumo:
Cyanobacteria are a diverse group of oxygenic photosynthetic bacteria that inhabit in a wide range of environments. They are versatile and multifaceted organisms with great possibilities for different biotechnological applications. For example, cyanobacteria produce molecular hydrogen (H2), which is one of the most important alternatives for clean and sustainable energy. Apart from being beneficial, cyanobacteria also possess harmful characteristics and may become a source of threat to human health and other living organisms, as they are able to form surface blooms that are producing a variety of toxic or bioactive compounds. The University of Helsinki Culture Collection (UHCC) maintains around 1,000 cyanobacterial strains representing a large number of genera and species isolated from the Baltic Sea and Finnish lakes. The culture collection covers different life forms such as unicellular and filamentous, N2-fixing and non-N2-fixing strains, and planktonic and benthic cyanobacteria. In this thesis, the UHCC has been screened to identify potential strains for sustainable biohydrogen production and also for strains that produce compounds modifying the bioenergetic pathways of other cyanobacteria or terrestrial plants. Among the 400 cyanobacterial strains screened so far, ten were identified as high H2-producing strains. The enzyme systems involved in H2 metabolism of cyanobacteria were analyzed using the Southern hybridization approach. This revealed the presence of the enzyme nitrogenase in all strains tested, while none of them are likely to have contained alternative nitrogenases. All the strains tested, except for two Calothrix strains, XSPORK 36C and XSPORK 11A, were suggested to contain both uptake and bidirectional hydrogenases. Moreover, 55 methanol extracts of various cyanobacterial strains were screened to identify potent bioactive compounds affecting the photosynthetic apparatus of the model cyanobacterium, Synechocystis PCC 6803. The extract from Nostoc XPORK 14A was the only one that modified the photosynthetic machinery and dark respiration. The compound responsible for this effect was identified, purified, and named M22. M22 demonstrated a dual-action mechanism: production of reactive oxygen species (ROS) under illumination and an unknown mechanism that also prevailed in the dark. During summer, the Baltic Sea is occupied by toxic blooms of Nodularia spumigena (hereafter referred to as N. spumigena), which produces a hepatotoxin called nodularin. Long-term exposure of the terrestrial plant spinach to nodularin was studied. Such treatment resulted in inhibition of growth and chlorosis of the leaves. Moreover, the activity and amount of mitochondrial electron transfer complexes increased in the leaves exposed to nodularin-containing extract, indicating upregulation of respiratory reactions, whereas no marked changes were detected in the structure or function of the photosynthetic machinery. Nodularin-exposed plants suffered from oxidative stress, evidenced by oxidative modifications of various proteins. Plants initiated strategies to combat the stress by increasing the levels of alpha-tocopherol, mitochondrial alternative oxidase (AOX), and mitochondrial ascorbate peroxidase (mAPX).
Resumo:
Pienien värierojen mittaamiseen käytetään CIE:n (The International Commission on Illumination) kehittämää ja standardoitua CIELAB – väriavaruutta ja sille suunniteltua CIEDE2000 – värieromittaria. CIELAB ei kuitenkaan ole täysin yhtenäinen ja siksi mittareita joudutaan virittämään sopivammiksi tähän väriavaruuteen. Työssä tutkitaan millä tavoin CIELAB - väriavaruutta voitaisiin korjata, jotta siitä saataisiin yhtenäisempi ja yksinkertainen ja virittämättömämpi värieromittari toimisi siinä paremmin. Työn tuloksena saatu muokattu väriavaruus paransi yhtenäisyyttä keskimäärin kymmenen prosenttia, mikä on liian vähän kun tavoitteena oli 30 - 50 prosenttia.
Resumo:
It is known already from 1970´s that laser beam is suitable for processing paper materials. In this thesis, term paper materials mean all wood-fibre based materials, like dried pulp, copy paper, newspaper, cardboard, corrugated board, tissue paper etc. Accordingly, laser processing in this thesis means all laser treatments resulting material removal, like cutting, partial cutting, marking, creasing, perforation etc. that can be used to process paper materials. Laser technology provides many advantages for processing of paper materials: non-contact method, freedom of processing geometry, reliable technology for non-stop production etc. Especially packaging industry is very promising area for laser processing applications. However, there are only few industrial laser processing applications worldwide even in beginning of 2010´s. One reason for small-scale use of lasers in paper material manufacturing is that there is a shortage of published research and scientific articles. Another problem, restraining the use of laser for processing of paper materials, is colouration of paper material i.e. the yellowish and/or greyish colour of cut edge appearing during cutting or after cutting. These are the main reasons for selecting the topic of this thesis to concern characterization of interaction of laser beam and paper materials. This study was carried out in Laboratory of Laser Processing at Lappeenranta University of Technology (Finland). Laser equipment used in this study was TRUMPF TLF 2700 carbon dioxide laser that produces a beam with wavelength of 10.6 μm with power range of 190-2500 W (laser power on work piece). Study of laser beam and paper material interaction was carried out by treating dried kraft pulp (grammage of 67 g m-2) with different laser power levels, focal plane postion settings and interaction times. Interaction between laser beam and dried kraft pulp was detected with different monitoring devices, i.e. spectrometer, pyrometer and active illumination imaging system. This way it was possible to create an input and output parameter diagram and to study the effects of input and output parameters in this thesis. When interaction phenomena are understood also process development can be carried out and even new innovations developed. Fulfilling the lack of information on interaction phenomena can assist in the way of lasers for wider use of technology in paper making and converting industry. It was concluded in this thesis that interaction of laser beam and paper material has two mechanisms that are dependent on focal plane position range. Assumed interaction mechanism B appears in range of average focal plane position of 3.4 mm and 2.4 mm and assumed interaction mechanism A in range of average focal plane position of 0.4 mm and -0.6 mm both in used experimental set up. Focal plane position 1.4 mm represents midzone of these two mechanisms. Holes during laser beam and paper material interaction are formed gradually: first small hole is formed to interaction area in the centre of laser beam cross-section and after that, as function of interaction time, hole expands, until interaction between laser beam and dried kraft pulp is ended. By the image analysis it can be seen that in beginning of laser beam and dried kraft pulp material interaction small holes off very good quality are formed. It is obvious that black colour and heat affected zone appear as function of interaction time. This reveals that there still are different interaction phases within interaction mechanisms A and B. These interaction phases appear as function of time and also as function of peak intensity of laser beam. Limit peak intensity is the value that divides interaction mechanism A and B from one-phase interaction into dual-phase interaction. So all peak intensity values under limit peak intensity belong to MAOM (interaction mechanism A one-phase mode) or to MBOM (interaction mechanism B onephase mode) and values over that belong to MADM (interaction mechanism A dual-phase mode) or to MBDM (interaction mechanism B dual-phase mode). Decomposition process of cellulose is evolution of hydrocarbons when temperature is between 380- 500°C. This means that long cellulose molecule is split into smaller volatile hydrocarbons in this temperature range. As temperature increases, decomposition process of cellulose molecule changes. In range of 700-900°C, cellulose molecule is mainly decomposed into H2 gas; this is why this range is called evolution of hydrogen. Interaction in this range starts (as in range of MAOM and MBOM), when a small good quality hole is formed. This is due to “direct evaporation” of pulp via decomposition process of evolution of hydrogen. And this can be seen can be seen in spectrometer as high intensity peak of yellow light (in range of 588-589 nm) which refers to temperature of ~1750ºC. Pyrometer does not detect this high intensity peak since it is not able to detect physical phase change from solid kraft pulp to gaseous compounds. As interaction time between laser beam and dried kraft pulp continues, hypothesis is that three auto ignition processes occurs. Auto ignition of substance is the lowest temperature in which it will spontaneously ignite in a normal atmosphere without an external source of ignition, such as a flame or spark. Three auto ignition processes appears in range of MADM and MBDM, namely: 1. temperature of auto ignition of hydrogen atom (H2) is 500ºC, 2. temperature of auto ignition of carbon monoxide molecule (CO) is 609ºC and 3. temperature of auto ignition of carbon atom (C) is 700ºC. These three auto ignition processes leads to formation of plasma plume which has strong emission of radiation in range of visible light. Formation of this plasma plume can be seen as increase of intensity in wavelength range of ~475-652 nm. Pyrometer shows maximum temperature just after this ignition. This plasma plume is assumed to scatter laser beam so that it interacts with larger area of dried kraft pulp than what is actual area of beam cross-section. This assumed scattering reduces also peak intensity. So result shows that assumably scattered light with low peak intensity is interacting with large area of hole edges and due to low peak intensity this interaction happens in low temperature. So interaction between laser beam and dried kraft pulp turns from evolution of hydrogen to evolution of hydrocarbons. This leads to black colour of hole edges.
Resumo:
Tämän diplomityön tavoitteena on ollut selvittää, kuinka robotisoitua hitsausta on mahdollista hyödyntää teollisuuskaiteiden valmistuksessa. Tutkimusmenetelminä käytettiin kirjallisuusselvitystä, hitsauskokeita ja makrohietutkimuksia. Työssä keskityttiin robottihitsauksen menetelmiin ja työstä on rajattu pois kaikki kustannuslaskelmat sekä alumiinin hitsaus. Hitsattavat materiaalit olivat rakenneteräs ja ruostumaton teräs. Rakenneteräsputken koko oli 42,4 x 2,6 mm ja ruostumattoman putken koko 42,4 x 2,0 mm. Käytetyt liitosmuodot olivat T-liitoksia, joista suorassa T-liitoksessa putkien välinen kulma oli 90 astetta ja vinossa T-liitoksessa noin 45 astetta. Tehdyn selvitystyön ja hitsauskokeiden perusteella voidaan sanoa, että kaiteissa käytettävien materiaalipaksuuksien ja liitosmuotojen hitsaaminen robotilla on mahdollista. Hitsauksen lopputulos riippuu hitsausasennosta ja paras tulos saavutetaan, kun kappaletta pyöritetään hitsauksen aikana siten, että hitsaus tapahtuu koko ajan jalkoasennossa.