6 resultados para limbing fluency
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Kioton pöytäkirja velvoittaa teollisuusmaita vähentämään hiilidioksidipäästöjään. Energiantuotantolaitosten on vähennettävä tuotantoaan tai siirryttävä käyttämään vähäpäästöisempiä polttoaineita vähennystavoitteiden saavuttamiseksi. Etelä-Savon Energia Oy Mikkelissä rakentaa uuden kattilalaitoksen, joka soveltuu hiilidioksidivapaiden puupolttoaineiden polttoon. Kun uusi kattilalaitos otetaan käyttöön, kasvaa voimalaitoksen polttoaineiden kulutus 1,7 -kertaiseksi. Tämä merkitsee laitokselle tulevien polttoainekuljetusten määrän kasvamista kylmimpinä aikoina yli 70:neen autoon vuorokaudessa. Työssä on tarkasteltu nykyisen polttoaineiden vastaanoton ja kuljettimien kykyä ottaa vastaan kasvavat polttoainevirrat. Vastaanoton sujuvuus on polttoaineiden laadunhallinnan lisäksi edellytys laitoksen käytölle. Työn tavoitteena on ollut kartoittaa vastaanoton ongelmakohtia ja löytää näihin parannusmahdollisuuksia. Vastaanottokapasiteetti tulee venymään äärimmilleen tulevaisuudessa. Jotta määrällisesti riittävä ja laadullisesti sopiva polttoaineseos saadaan vastaanotettua nykyisenä vastaanottoaikana, tulee autojen saapua entistä tasaisemmin laitokselle. Tasainen saapuminen on mahdollista aikatauluttamalla sopivasti polttoainekuljetusten saapumisajat laitokselle. Vastaanoton kapasiteettia voitaisiin nostaa kasvattamalla kenttävaraston kokoa ja pienillä muutoksilla vastaanottoasemissa. Polttoaineen laadun ja vastaanoton tarkastelun lisäksi työssä on tarkasteltu polttoaineen saatavuutta.
Resumo:
Process development will be largely driven by the main equipment suppliers. The reason for this development is their ambition to supply complete plants or process systems instead of single pieces of equipment. The pulp and paper companies' interest lies in product development, as their main goal is to create winning brands and effective brand management. Design engineering companies will find their niche in detail engineering based on approved process solutions. Their development work will focus on increasing the efficiency of engineering work. Process design is a content-producing profession, which requires certain special characteristics: creativity, carefulness, the ability to work as a member of a design team according to time schedules and fluency in oral as well as written presentation. In the future, process engineers will increasingly need knowledge of chemistry as well as information and automation technology. Process engineering tools are developing rapidly. At the moment, these tools are good enough for static sizing and balancing, but dynamic simulation tools are not yet good enough for the complicated chemical reactions of pulp and paper chemistry. Dynamic simulation and virtual mill models are used as tools for training the operators. Computational fluid dynamics will certainlygain ground in process design.
Resumo:
Työn tavoitteena oli suunnitella ja toteuttaa elinkaarikustannusten laskentasovellus teknologiaympäristössä. Ensin luotiin elinkaarikustannuslaskennalle viitekehys ja työlle teoreettinen pohja kirjallisuuslähteiden perusteella. Varsinainen tutkimus aloitettiin strategisille asiakkaille suunnatulla tutkimuksella heidän käyttämistään sovelluksista elinkaarikustannusten laskentaan, laskennan menetelmistä sekä yhteistyön kannalta oleellisista kustannusparametreista. Lisäksi selvitettiin yrityksen omat tarpeet laskennalle.Seuraavaksi kartoitettiin markkinoilta löytyviä sovelluksia elinkaarikustannusten hallintaan, joista valittiin neljä tarkempaan vertailuun aiemmin selvitettyjen vaatimusten perusteella. Vaihtoehtona harkittiin myös oman laskentasovelluksen kehittämistä, mutta todettiin vertailussa löytyneen valmiin ohjelmiston täyttävän sovellukselle asetetut vaatimukset niin hyvin, ettei oman sovelluksen suunnittelun katsottu olevan tarpeellista.Lopuksi muokattiin valittu sovellus toimimaan tulevassa käyttöympäristössä ja luotiin käytön kannalta oleelliset tietokannat elinkaarikustannusten laskennassa tarvittaville lähtötiedoille. Samalla luotiin myös toimintarutiinit ja jaettiin vastuut sovelluksen tulevaa käyttöä ja tietokantojen päivitystä varten. Tutkimuksen tuloksena saatiin yrityksen käyttöön luotua sekä yrityksen että asiakkaiden vaatimukset täyttävä sovellus elinkaarikustannusten laskentaan.
Resumo:
Previous studies on pencil grip have typically dealt with the developmental aspects in young children while handwriting research is mainly concerned with speed and legibility. Studies linking these areas are few. Evaluation of the existing pencil grip studies is hampered by methodological inconsistencies. The operational definitions of pencil grip arerational but tend to be oversimplified while detailed descriptors tend to be impractical due to their multiplicity. The present study introduces a descriptive two-dimensional model for the categorisation of pencil grip suitable for research applications in a classroom setting. The model is used in four empirical studies of children during the first six years of writing instruction. Study 1 describes the pencil grips observed in a large group of pupils in Finland (n = 504). The results indicate that in Finland the majority of grips resemble the traditional dynamic tripod grip. Significant genderrelated differences in pencil grip were observed. Study 2 is a longitudinal exploration of grip stability vs. change (n = 117). Both expected and unexpected changes were observed in about 25 per cent of the children's grips over four years. A new finding emerged using the present model for categorisation: whereas pencil grips would change, either in terms of ease of grip manipulation or grip configuration, no instances were found where a grip would have changed concurrently on both dimensions. Study 3 is a cross-cultural comparison of grips observed in Finland and the USA (n = 793). The distribution of the pencil grips observed in the American pupils was significantly different from those found in Finland. The cross-cultural disparity is most likely related to the differences in the onset of writing instruction. The differences between the boys' and girls' grips in the American group were non-significant.An implication of Studies 2 and 3 is that the initial pencil grip is of foremost importance since pencil grips are largely stable over time. Study 4 connects the pencil grips to assessment of the mechanics of writing (n = 61). It seems that certain previously not recommended pencil grips might nevertheless be includedamong those accepted since they did not appear to hamper either fluency or legibility.
Resumo:
The aim of the present set of studies was to explore primary school children’s Spontaneous Focusing On quantitative Relations (SFOR) and its role in the development of rational number conceptual knowledge. The specific goals were to determine if it was possible to identify a spontaneous quantitative focusing tendency that indexes children’s tendency to recognize and utilize quantitative relations in non-explicitly mathematical situations and to determine if this tendency has an impact on the development of rational number conceptual knowledge in late primary school. To this end, we report on six original empirical studies that measure SFOR in children ages five to thirteen years and the development of rational number conceptual knowledge in ten- to thirteen-year-olds. SFOR measures were developed to determine if there are substantial differences in SFOR that are not explained by the ability to use quantitative relations. A measure of children’s conceptual knowledge of the magnitude representations of rational numbers and the density of rational numbers is utilized to capture the process of conceptual change with rational numbers in late primary school students. Finally, SFOR tendency was examined in relation to the development of rational number conceptual knowledge in these students. Study I concerned the first attempts to measure individual differences in children’s spontaneous recognition and use of quantitative relations in 86 Finnish children from the ages of five to seven years. Results revealed that there were substantial inter-individual differences in the spontaneous recognition and use of quantitative relations in these tasks. This was particularly true for the oldest group of participants, who were in grade one (roughly seven years old). However, the study did not control for ability to solve the tasks using quantitative relations, so it was not clear if these differences were due to ability or SFOR. Study II more deeply investigated the nature of the two tasks reported in Study I, through the use of a stimulated-recall procedure examining children’s verbalizations of how they interpreted the tasks. Results reveal that participants were able to verbalize reasoning about their quantitative relational responses, but not their responses based on exact number. Furthermore, participants’ non-mathematical responses revealed a variety of other aspects, beyond quantitative relations and exact number, which participants focused on in completing the tasks. These results suggest that exact number may be more easily perceived than quantitative relations. As well, these tasks were revealed to contain both mathematical and non-mathematical aspects which were interpreted by the participants as relevant. Study III investigated individual differences in SFOR 84 children, ages five to nine, from the US and is the first to report on the connection between SFOR and other mathematical abilities. The cross-sectional data revealed that there were individual differences in SFOR. Importantly, these differences were not entirely explained by the ability to solve the tasks using quantitative relations, suggesting that SFOR is partially independent from the ability to use quantitative relations. In other words, the lack of use of quantitative relations on the SFOR tasks was not solely due to participants being unable to solve the tasks using quantitative relations, but due to a lack of the spontaneous attention to the quantitative relations in the tasks. Furthermore, SFOR tendency was found to be related to arithmetic fluency among these participants. This is the first evidence to suggest that SFOR may be a partially distinct aspect of children’s existing mathematical competences. Study IV presented a follow-up study of the first graders who participated in Studies I and II, examining SFOR tendency as a predictor of their conceptual knowledge of fraction magnitudes in fourth grade. Results revealed that first graders’ SFOR tendency was a unique predictor of fraction conceptual knowledge in fourth grade, even after controlling for general mathematical skills. These results are the first to suggest that SFOR tendency may play a role in the development of rational number conceptual knowledge. Study V presents a longitudinal study of the development of 263 Finnish students’ rational number conceptual knowledge over a one year period. During this time participants completed a measure of conceptual knowledge of the magnitude representations and the density of rational numbers at three time points. First, a Latent Profile Analysis indicated that a four-class model, differentiating between those participants with high magnitude comparison and density knowledge, was the most appropriate. A Latent Transition Analysis reveal that few students display sustained conceptual change with density concepts, though conceptual change with magnitude representations is present in this group. Overall, this study indicated that there were severe deficiencies in conceptual knowledge of rational numbers, especially concepts of density. The longitudinal Study VI presented a synthesis of the previous studies in order to specifically detail the role of SFOR tendency in the development of rational number conceptual knowledge. Thus, the same participants from Study V completed a measure of SFOR, along with the rational number test, including a fourth time point. Results reveal that SFOR tendency was a predictor of rational number conceptual knowledge after two school years, even after taking into consideration prior rational number knowledge (through the use of residualized SFOR scores), arithmetic fluency, and non-verbal intelligence. Furthermore, those participants with higher-than-expected SFOR scores improved significantly more on magnitude representation and density concepts over the four time points. These results indicate that SFOR tendency is a strong predictor of rational number conceptual development in late primary school children. The results of the six studies reveal that within children’s existing mathematical competences there can be identified a spontaneous quantitative focusing tendency named spontaneous focusing on quantitative relations. Furthermore, this tendency is found to play a role in the development of rational number conceptual knowledge in primary school children. Results suggest that conceptual change with the magnitude representations and density of rational numbers is rare among this group of students. However, those children who are more likely to notice and use quantitative relations in situations that are not explicitly mathematical seem to have an advantage in the development of rational number conceptual knowledge. It may be that these students gain quantitative more and qualitatively better self-initiated deliberate practice with quantitative relations in everyday situations due to an increased SFOR tendency. This suggests that it may be important to promote this type of mathematical activity in teaching rational numbers. Furthermore, these results suggest that there may be a series of spontaneous quantitative focusing tendencies that have an impact on mathematical development throughout the learning trajectory.
Resumo:
We have investigated Russian children’s reading acquisition during an intermediate period in their development: after literacy onset, but before they have acquired well-developed decoding skills. The results of our study suggest that Russian first graders rely primarily on phonemes and syllables as reading grain-size units. Phonemic awareness seems to have reached the metalinguistic level more rapidly than syllabic awareness after the onset of reading instruction, the reversal which is typical for the initial stages of formal reading instruction creating external demand for phonemic awareness. Another reason might be the inherent instability of syllabic boundaries in Russian. We have shown that body-coda is a more natural representation of subsyllabic structure in Russian than onset-rime. We also found that Russian children displayed variability of syllable onset and offset decisions which can be attributed to the lack of congruence between syllabic and morphemic word division in Russian. We suggest that fuzziness of syllable boundary decisions is a sign of the transitional nature of this stage in the reading development and it indicates progress towards an awareness of morphologically determined closed syllables. Our study also showed that orthographic complexity exerts an influence on reading in Russian from the very start of reading acquisition. Besides, we found that Russian first graders experience fluency difficulties in reading orthographically simple words and nonwords of two and more syllables. The transition from monosyllabic to bisyllabic lexical items constitutes a certain threshold, for which the syllabic structure seemed to be of no difference. When we compared the outcomes of the Russian children with the ones produced by speakers of other languages, we discovered that in the tasks which could be performed with the help of alphabetic recoding Russian children’s accuracy was comparable to that of children learning to read in relatively shallow orthographies. In tasks where this approach works only partially, Russian children demonstrated accuracy results similar to those in deeper orthographies. This pattern of moderate results in accuracy and excellent performance in terms of reaction times is an indication that children apply phonological recoding as their dominant strategy to various reading tasks and are only beginning to develop suitable multiple strategies in dealing with orthographically complex material. The development of these strategies is not completed during Grade 1 and the shift towards diversification of strategies apparently continues in Grade 2.