11 resultados para genetic algorithm-kernel partial least squares

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in machine learning methods enable increasingly the automatic construction of various types of computer assisted methods that have been difficult or laborious to program by human experts. The tasks for which this kind of tools are needed arise in many areas, here especially in the fields of bioinformatics and natural language processing. The machine learning methods may not work satisfactorily if they are not appropriately tailored to the task in question. However, their learning performance can often be improved by taking advantage of deeper insight of the application domain or the learning problem at hand. This thesis considers developing kernel-based learning algorithms incorporating this kind of prior knowledge of the task in question in an advantageous way. Moreover, computationally efficient algorithms for training the learning machines for specific tasks are presented. In the context of kernel-based learning methods, the incorporation of prior knowledge is often done by designing appropriate kernel functions. Another well-known way is to develop cost functions that fit to the task under consideration. For disambiguation tasks in natural language, we develop kernel functions that take account of the positional information and the mutual similarities of words. It is shown that the use of this information significantly improves the disambiguation performance of the learning machine. Further, we design a new cost function that is better suitable for the task of information retrieval and for more general ranking problems than the cost functions designed for regression and classification. We also consider other applications of the kernel-based learning algorithms such as text categorization, and pattern recognition in differential display. We develop computationally efficient algorithms for training the considered learning machines with the proposed kernel functions. We also design a fast cross-validation algorithm for regularized least-squares type of learning algorithm. Further, an efficient version of the regularized least-squares algorithm that can be used together with the new cost function for preference learning and ranking tasks is proposed. In summary, we demonstrate that the incorporation of prior knowledge is possible and beneficial, and novel advanced kernels and cost functions can be used in algorithms efficiently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent years have produced great advances in the instrumentation technology. The amount of available data has been increasing due to the simplicity, speed and accuracy of current spectroscopic instruments. Most of these data are, however, meaningless without a proper analysis. This has been one of the reasons for the overgrowing success of multivariate handling of such data. Industrial data is commonly not designed data; in other words, there is no exact experimental design, but rather the data have been collected as a routine procedure during an industrial process. This makes certain demands on the multivariate modeling, as the selection of samples and variables can have an enormous effect. Common approaches in the modeling of industrial data are PCA (principal component analysis) and PLS (projection to latent structures or partial least squares) but there are also other methods that should be considered. The more advanced methods include multi block modeling and nonlinear modeling. In this thesis it is shown that the results of data analysis vary according to the modeling approach used, thus making the selection of the modeling approach dependent on the purpose of the model. If the model is intended to provide accurate predictions, the approach should be different than in the case where the purpose of modeling is mostly to obtain information about the variables and the process. For industrial applicability it is essential that the methods are robust and sufficiently simple to apply. In this way the methods and the results can be compared and an approach selected that is suitable for the intended purpose. Differences in data analysis methods are compared with data from different fields of industry in this thesis. In the first two papers, the multi block method is considered for data originating from the oil and fertilizer industries. The results are compared to those from PLS and priority PLS. The third paper considers applicability of multivariate models to process control for a reactive crystallization process. In the fourth paper, nonlinear modeling is examined with a data set from the oil industry. The response has a nonlinear relation to the descriptor matrix, and the results are compared between linear modeling, polynomial PLS and nonlinear modeling using nonlinear score vectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cooling crystallization is one of the most important purification and separation techniques in the chemical and pharmaceutical industry. The product of the cooling crystallization process is always a suspension that contains both the mother liquor and the product crystals, and therefore the first process step following crystallization is usually solid-liquid separation. The properties of the produced crystals, such as their size and shape, can be affected by modifying the conditions during the crystallization process. The filtration characteristics of solid/liquid suspensions, on the other hand, are strongly influenced by the particle properties, as well as the properties of the liquid phase. It is thus obvious that the effect of the changes made to the crystallization parameters can also be seen in the course of the filtration process. Although the relationship between crystallization and filtration is widely recognized, the number of publications where these unit operations have been considered in the same context seems to be surprisingly small. This thesis explores the influence of different crystallization parameters in an unseeded batch cooling crystallization process on the external appearance of the product crystals and on the pressure filtration characteristics of the obtained product suspensions. Crystallization experiments are performed by crystallizing sulphathiazole (C9H9N3O2S2), which is a wellknown antibiotic agent, from different mixtures of water and n-propanol in an unseeded batch crystallizer. The different crystallization parameters that are studied are the composition of the solvent, the cooling rate during the crystallization experiments carried out by using a constant cooling rate throughout the whole batch, the cooling profile, as well as the mixing intensity during the batch. The obtained crystals are characterized by using an automated image analyzer and the crystals are separated from the solvent through constant pressure batch filtration experiments. Separation characteristics of the suspensions are described by means of average specific cake resistance and average filter cake porosity, and the compressibilities of the cakes are also determined. The results show that fairly large differences can be observed between the size and shape of the crystals, and it is also shown experimentally that the changes in the crystal size and shape have a direct impact on the pressure filtration characteristics of the crystal suspensions. The experimental results are utilized to create a procedure that can be used for estimating the filtration characteristics of solid-liquid suspensions according to the particle size and shape data obtained by image analysis. Multilinear partial least squares regression (N-PLS) models are created between the filtration parameters and the particle size and shape data, and the results presented in this thesis show that relatively obvious correlations can be detected with the obtained models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this dissertation is the motivational influences on transfer in higher education and professional training contexts. To estimate these motivational influences, the dissertation includes seven individual studies that are structured in two parts. Part I, Dimensions, aims at identifying the dimensionality of motivation to transfer and its structural relations with training-related antecedents and outcomes. Part II, Boundary Conditions, aims at testing the predictive validity of motivation theories used in contemporary training research under different study conditions. Data in this dissertation was gathered from multi-item questionnaires, which were analyzed differently in Part I and Part II. Studies in Part I employed exploratory and confirmatory factor analysis, structural equation modeling, partial least squares (PLS) path modeling, and mediation analysis. Studies in Part II used artifact distribution meta-analysis, (nested) subgroup analysis, and weighted least squares (WLS) multiple regression. Results demonstrate that motivation to transfer can be conceptualized as a three-dimensional construct, including autonomous motivation to transfer, controlled motivation to transfer, and intention to transfer, given a theoretical framework informed by expectancy theory, self-determination theory, and the theory of planned behavior. Results also demonstrate that a range of boundary conditions moderates motivational influences on transfer. To test the predictive validity of expectancy theory, social cognitive theory, and the theory of goal orientations under different study settings, a total of 17 boundary conditions were meta-analyzed, including age; assessment criterion; assessment source; attendance policy; collaboration among trainees; computer support; instruction; instrument used to measure motivation; level of education; publication type; social training context; SS/SMC bias; study setting; survey modality; type of knowledge being trained; use of a control group; and work context. Together, the findings cumulated in this thesis support the basic premise that motivation is centrally important for transfer, but that motivational influences need to be understood from a more differentiated perspective than commonly found in the literature, in order to account for several dimensions and boundary conditions. The results of this dissertation across the seven individual studies are reflected in terms of their implications for theory development and their significance for training evaluation and the design of training environments. Limitations and directions to take in future research are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Singular Value Decomposition (SVD), Principal Component Analysis (PCA) and Multiple Linear Regression (MLR) are some of the mathematical pre- liminaries that are discussed prior to explaining PLS and PCR models. Both PLS and PCR are applied to real spectral data and their di erences and similarities are discussed in this thesis. The challenge lies in establishing the optimum number of components to be included in either of the models but this has been overcome by using various diagnostic tools suggested in this thesis. Correspondence analysis (CA) and PLS were applied to ecological data. The idea of CA was to correlate the macrophytes species and lakes. The di erences between PLS model for ecological data and PLS for spectral data are noted and explained in this thesis. i

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiential marketing is increasingly seen as a new magical key to consumers’ hearts. Brands are turning brick-and-mortar stores into state of the art retail spaces where memorable experiences and strong brand relationships are hoped to be born. Around the globe, several brands have opened up a special format of stores – the experience store. Although many speculations on the positive effects of experiences have been presented, few studies have provided empirical, quantified evidence for the link between store experiences and brand success. In consequence, research was needed to find out whether experience stores truly are so special. The purpose of this thesis was to investigate whether store experiences are capable of building brands and influencing store performance. For this purpose, empirical research was conducted in the Samsung Experience Store Helsinki. As main constructs of the study, store experience, brand equity, store performance, and product class involvement were measured, along with relevant background variables. Data was collected with an electronic survey from actual customers of the store, resulting in a sample of 131 respondents. Partial least squares structural equations modeling (PLS) was used for the analysis of the research model. Also, regression analysis was conducted to account for mediation and moderation effects. The results showed that store experiences do positively influence first, store performance, and second, separate dimensions of brand equity (that is, brand awareness, brand personality, and brand loyalty). Also, the effect of store experiences on store performance was found to be mediated by brand equity. Interestingly, customers’ product class involvement was detected to moderate the effect of store experience on store performance. That is, those who were highly involved with electronics had greater store experiences, and also displayed a stronger linkage between store experience and store performance. The results encourage marketers to continue with efforts to create great experiences for their customers. Experience stores can – and should be seen – as both powerful brand building tools and profitable sales channels. The creation of exceptional experiences can act as an important function of physical stores in the face of severe online competition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to contribute to the current knowledge-based theory by focusing on a research gap that exists in the empirically proven determination of the simultaneous but differentiable effects of intellectual capital (IC) assets and knowledge management (KM) practices on organisational performance (OP). The analysis was built on the past research and theoreticised interactions between the latent constructs specified using the survey-based items that were measured from a sample of Finnish companies for IC and KM and the dependent construct for OP determined using information available from financial databases. Two widely used and commonly recommended measures in the literature on management science, i.e. the return on total assets (ROA) and the return on equity (ROE), were calculated for OP. Thus the investigation of the relationship between IC and KM impacting OP in relation to the hypotheses founded was possible to conduct using objectively derived performance indicators. Using financial OP measures also strengthened the dynamic features of data needed in analysing simultaneous and causal dependences between the modelled constructs specified using structural path models. The estimates were obtained for the parameters of structural path models using a partial least squares-based regression estimator. Results showed that the path dependencies between IC and OP or KM and OP were always insignificant when analysed separate to any other interactions or indirect effects caused by simultaneous modelling and regardless of the OP measure used that was either ROA or ROE. The dependency between the constructs for KM and IC appeared to be very strong and was always significant when modelled simultaneously with other possible interactions between the constructs and using either ROA or ROE to define OP. This study, however, did not find statistically unambiguous evidence for proving the hypothesised causal mediation effects suggesting, for instance, that the effects of KM practices on OP are mediated by the IC assets. Due to the fact that some indication about the fluctuations of causal effects was assessed, it was concluded that further studies are needed for verifying the fundamental and likely hidden causal effects between the constructs of interest. Therefore, it was also recommended that complementary modelling and data processing measures be conducted for elucidating whether the mediation effects occur between IC, KM and OP, the verification of which requires further investigations of measured items and can be build on the findings of this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback. In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machine learning provides tools for automated construction of predictive models in data intensive areas of engineering and science. The family of regularized kernel methods have in the recent years become one of the mainstream approaches to machine learning, due to a number of advantages the methods share. The approach provides theoretically well-founded solutions to the problems of under- and overfitting, allows learning from structured data, and has been empirically demonstrated to yield high predictive performance on a wide range of application domains. Historically, the problems of classification and regression have gained the majority of attention in the field. In this thesis we focus on another type of learning problem, that of learning to rank. In learning to rank, the aim is from a set of past observations to learn a ranking function that can order new objects according to how well they match some underlying criterion of goodness. As an important special case of the setting, we can recover the bipartite ranking problem, corresponding to maximizing the area under the ROC curve (AUC) in binary classification. Ranking applications appear in a large variety of settings, examples encountered in this thesis include document retrieval in web search, recommender systems, information extraction and automated parsing of natural language. We consider the pairwise approach to learning to rank, where ranking models are learned by minimizing the expected probability of ranking any two randomly drawn test examples incorrectly. The development of computationally efficient kernel methods, based on this approach, has in the past proven to be challenging. Moreover, it is not clear what techniques for estimating the predictive performance of learned models are the most reliable in the ranking setting, and how the techniques can be implemented efficiently. The contributions of this thesis are as follows. First, we develop RankRLS, a computationally efficient kernel method for learning to rank, that is based on minimizing a regularized pairwise least-squares loss. In addition to training methods, we introduce a variety of algorithms for tasks such as model selection, multi-output learning, and cross-validation, based on computational shortcuts from matrix algebra. Second, we improve the fastest known training method for the linear version of the RankSVM algorithm, which is one of the most well established methods for learning to rank. Third, we study the combination of the empirical kernel map and reduced set approximation, which allows the large-scale training of kernel machines using linear solvers, and propose computationally efficient solutions to cross-validation when using the approach. Next, we explore the problem of reliable cross-validation when using AUC as a performance criterion, through an extensive simulation study. We demonstrate that the proposed leave-pair-out cross-validation approach leads to more reliable performance estimation than commonly used alternative approaches. Finally, we present a case study on applying machine learning to information extraction from biomedical literature, which combines several of the approaches considered in the thesis. The thesis is divided into two parts. Part I provides the background for the research work and summarizes the most central results, Part II consists of the five original research articles that are the main contribution of this thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigates theoretical properties of symmetric and anti-symmetric kernels. First chapters give an overview of the theory of kernels used in supervised machine learning. Central focus is on the regularized least squares algorithm, which is motivated as a problem of function reconstruction through an abstract inverse problem. Brief review of reproducing kernel Hilbert spaces shows how kernels define an implicit hypothesis space with multiple equivalent characterizations and how this space may be modified by incorporating prior knowledge. Mathematical results of the abstract inverse problem, in particular spectral properties, pseudoinverse and regularization are recollected and then specialized to kernels. Symmetric and anti-symmetric kernels are applied in relation learning problems which incorporate prior knowledge that the relation is symmetric or anti-symmetric, respectively. Theoretical properties of these kernels are proved in a draft this thesis is based on and comprehensively referenced here. These proofs show that these kernels can be guaranteed to learn only symmetric or anti-symmetric relations, and they can learn any relations relative to the original kernel modified to learn only symmetric or anti-symmetric parts. Further results prove spectral properties of these kernels, central result being a simple inequality for the the trace of the estimator, also called the effective dimension. This quantity is used in learning bounds to guarantee smaller variance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most disputable matters in the theory of finance has been the theory of capital structure. The seminal contributions of Modigliani and Miller (1958, 1963) gave rise to a multitude of studies and debates. Since the initial spark, the financial literature has offered two competing theories of financing decision: the trade-off theory and the pecking order theory. The trade-off theory suggests that firms have an optimal capital structure balancing the benefits and costs of debt. The pecking order theory approaches the firm capital structure from information asymmetry perspective and assumes a hierarchy of financing, with firms using first internal funds, followed by debt and as a last resort equity. This thesis analyses the trade-off and pecking order theories and their predictions on a panel data consisting 78 Finnish firms listed on the OMX Helsinki stock exchange. Estimations are performed for the period 2003–2012. The data is collected from Datastream system and consists of financial statement data. A number of capital structure characteristics are identified: firm size, profitability, firm growth opportunities, risk, asset tangibility and taxes, speed of adjustment and financial deficit. A regression analysis is used to examine the effects of the firm characteristics on capitals structure. The regression models were formed based on the relevant theories. The general capital structure model is estimated with fixed effects estimator. Additionally, dynamic models play an important role in several areas of corporate finance, but with the combination of fixed effects and lagged dependent variables the model estimation is more complicated. A dynamic partial adjustment model is estimated using Arellano and Bond (1991) first-differencing generalized method of moments, the ordinary least squares and fixed effects estimators. The results for Finnish listed firms show support for the predictions of profitability, firm size and non-debt tax shields. However, no conclusive support for the pecking-order theory is found. However, the effect of pecking order cannot be fully ignored and it is concluded that instead of being substitutes the trade-off and pecking order theory appear to complement each other. For the partial adjustment model the results show that Finnish listed firms adjust towards their target capital structure with a speed of 29% a year using book debt ratio.