32 resultados para forecasting, planning and control
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Researching Manufacturing Planning and Control system and Master Scheduling in a manufacturing firm.
Resumo:
The objective of this thesis is to research Manufacturing Planning and Control (MPC) system and Master Scheduling (MS) in a manufacturing firm. The study is conducted at Ensto Finland Corporation, which operates on a field of electrical systems and supplies. The paper consists of theoretical and empirical parts. The empirical part is based on weekly operating at Ensto and includes inter-firm material analysis, learning and meetings. Master Scheduling is an important module of an MPC system, since it is beneficial on transforming strategic production plans based on demand forecasting into operational schedules. Furthermore, capacity planning tools can remarkably contribute to production planning: by Rough-Cut Capacity Planning (RCCP) tool, a MS plan can be critically analyzed in terms of available key resources in real manufacturing environment. Currently, there are remarkable inefficiencies when it comes to Ensto’s practices: the system is not able to take into consideration seasonal demand and react on market changes on time; This can cause significant lost sales. However, these inefficiencies could be eliminated through the appropriate utilization of MS and RCCP tools. To utilize MS and RCCP tools in Ensto’s production environment, further testing in real production environment is required. Moreover, data accuracy, appropriate commitment to adapting and learning the new tools, and continuous developing of functions closely related to MS, such as sales forecasting, need to be ensured.
Resumo:
Tutkimuksen tarkoituksena on kuvata ja ymmärtää kuinka sisäisiä kehityshankkeita voidaan hallita onnistuneesti kun toimitaan nopeasti muuttuvassa ympäristössä. Tutkimus kuvailee etenkin projekteille tärkeitä menestymistekijöitä, kuten suunnittelu, kontrollointi ja päätöksenteko. Tutkimus selvittää yleisimmät ongelma-alueet case-organisaation sisäisten kehityshankkeiden hallinnassa. Tutkimus on luonteeltaan laadullinen tutkimus, jossa tutkimusmenetelmänä on käytetty tapaustutkimusta. Empiirisessa osassa käsittellään case-organisaation sisäisiä informaatioteknologia-hankkeita (IT) ja uusien konseptien kehityshankkeita (NCD). iSisäisten kehityshankkeiden erilaisuuden ymmärtäminen oli tutkimuksen tärkein tulos. Tutkimuksen empiirinen osio osoitti sen, että epävarmuudella on erittäin suuri vaikutus projektihallintaan sekä projektin kontrollointiin. Case-organisaation IT-projektien onnistuminen riippuu organisaatiomuu-toksen onnistumisesta. Asiakkaisiin ja markkinoihin liittyvät epävarmuudet ovat vaikuttavimmat NCD projektien epävarmuuksista. Näillä epävarmuuk-silla on vaikutusta projektihallintaan jonka myötä NCD projektit juuttuvat useimmiten noidankehiin tai ne lopetetaan jo aikaisessa vaiheessa.
Resumo:
Arkitus on kartongin jatkojalostusmuoto, jonka tehokkuus muodostuu monen tekijän vaikutuksesta. Tämän työn tavoitteena oli parantaa arkitustehokkuutta tutkitussa kahden folioleikkurin arkittamossa tuotannonsuunnittelun ja tuotannonohjauksen kehittämisellä. Kartonkitehtaan sisäisessä jalostusketjussa arkitus on viimeinen vaihe, mikä tekee siitä pitkälti riippuvaisen edeltävistä konevaiheista, eli kartonkikoneista ja PE-päällystyskoneista. Pelkkä arkituksen tuotannonsuunnittelun huomiointi ei siis vielä takaa hyvää lopputulosta arkitustehokkuuden kannalta. Folioarkitustoiminta on hyvin asiakassuuntautunutta. Arkkikoot määräytyvät asiakkaiden omien tarpeiden perusteella, jolloin eri arkkikokojen kokonaismäärä kasvaa huomattavan suureksi. Viime vuosien trendinä on ollut tilauseräkokojen pieneneminen. Näiden tekijöiden yhteisvaikutuksena arkituksen tuotantoprosessille on ominaista erilaisten asetusten aiheuttama katkonaisuus. Lisäksi pelkästään yhden millimetrin muutos arkin leveydessä voi usein vaikuttaa arkitustehokkuuteen hyvinkin merkittävästi. Näistä syistä arkituksen tuotannonsuunnittelun apuvälineeksi tarvitaan tarkkuuteen ja joustavuuteen kykenevää tietojärjestelmää. Tehokkaan tuotannonohjauksen tueksi tarvitaan lisäksi erilaisia leikkuri- ja kartonkilaatukohtaisia raportteja. Työn teoriaosassa käsitellään tarkemmin arkitustoiminnan ominaisuuksia ja sen tehokkuuteen vaikuttavia tekijöitä. Lisäksi käsitellään tuotannonsuunnittelun ja tuotannonohjauksen periaatteita ja toimintoja.
Resumo:
The dissertation proposes two control strategies, which include the trajectory planning and vibration suppression, for a kinematic redundant serial-parallel robot machine, with the aim of attaining the satisfactory machining performance. For a given prescribed trajectory of the robot's end-effector in the Cartesian space, a set of trajectories in the robot's joint space are generated based on the best stiffness performance of the robot along the prescribed trajectory. To construct the required system-wide analytical stiffness model for the serial-parallel robot machine, a variant of the virtual joint method (VJM) is proposed in the dissertation. The modified method is an evolution of Gosselin's lumped model that can account for the deformations of a flexible link in more directions. The effectiveness of this VJM variant is validated by comparing the computed stiffness results of a flexible link with the those of a matrix structural analysis (MSA) method. The comparison shows that the numerical results from both methods on an individual flexible beam are almost identical, which, in some sense, provides mutual validation. The most prominent advantage of the presented VJM variant compared with the MSA method is that it can be applied in a flexible structure system with complicated kinematics formed in terms of flexible serial links and joints. Moreover, by combining the VJM variant and the virtual work principle, a systemwide analytical stiffness model can be easily obtained for mechanisms with both serial kinematics and parallel kinematics. In the dissertation, a system-wide stiffness model of a kinematic redundant serial-parallel robot machine is constructed based on integration of the VJM variant and the virtual work principle. Numerical results of its stiffness performance are reported. For a kinematic redundant robot, to generate a set of feasible joints' trajectories for a prescribed trajectory of its end-effector, its system-wide stiffness performance is taken as the constraint in the joints trajectory planning in the dissertation. For a prescribed location of the end-effector, the robot permits an infinite number of inverse solutions, which consequently yields infinite kinds of stiffness performance. Therefore, a differential evolution (DE) algorithm in which the positions of redundant joints in the kinematics are taken as input variables was employed to search for the best stiffness performance of the robot. Numerical results of the generated joint trajectories are given for a kinematic redundant serial-parallel robot machine, IWR (Intersector Welding/Cutting Robot), when a particular trajectory of its end-effector has been prescribed. The numerical results show that the joint trajectories generated based on the stiffness optimization are feasible for realization in the control system since they are acceptably smooth. The results imply that the stiffness performance of the robot machine deviates smoothly with respect to the kinematic configuration in the adjacent domain of its best stiffness performance. To suppress the vibration of the robot machine due to varying cutting force during the machining process, this dissertation proposed a feedforward control strategy, which is constructed based on the derived inverse dynamics model of target system. The effectiveness of applying such a feedforward control in the vibration suppression has been validated in a parallel manipulator in the software environment. The experimental study of such a feedforward control has also been included in the dissertation. The difficulties of modelling the actual system due to the unknown components in its dynamics is noticed. As a solution, a back propagation (BP) neural network is proposed for identification of the unknown components of the dynamics model of the target system. To train such a BP neural network, a modified Levenberg-Marquardt algorithm that can utilize an experimental input-output data set of the entire dynamic system is introduced in the dissertation. Validation of the BP neural network and the modified Levenberg- Marquardt algorithm is done, respectively, by a sinusoidal output approximation, a second order system parameters estimation, and a friction model estimation of a parallel manipulator, which represent three different application aspects of this method.
Resumo:
The objective in this Master’s Thesis was to determine VOC emissions from veneer drying in softwood plywood manufacturing. Emissions from plywood industry have become an important factor because of the tightened regulations worldwide. In this Thesis is researched quality and quantity of the VOCs from softwood veneer drying. One of the main objectives was to find out suitable cleaning techniques for softwood VOC emissions. In introduction part is presented veneer drying machines, wood mechanical and chemical properties. VOC control techniques and specified VOC limits are introduced also in the introduction part. Plywood mills have not had interest to VOC emissions previously nevertheless nowadays plywood mills worldwide must consider reduction of the emissions. This Thesis includes measuring of emissions from softwood veneer dryer, analyzation of measured test results and reviewing results. Different air conditions inside of the dryer were considered during planning of the measurements. Results of the emissions measurements were compared to the established laws. Results from this Thesis were softwood veneer dryer emissions in different air conditions. Emission control techniques were also studied for softwood veneer dryer emissions for further specific research.
Resumo:
The objective of this project was to introduce a new software product to pulp industry, a new market for case company. An optimization based scheduling tool has been developed to allow pulp operations to better control their production processes and improve both production efficiency and stability. Both the work here and earlier research indicates that there is a potential for savings around 1-5%. All the supporting data is available today coming from distributed control systems, data historians and other existing sources. The pulp mill model together with the scheduler, allows what-if analyses of the impacts and timely feasibility of various external actions such as planned maintenance of any particular mill operation. The visibility gained from the model proves also to be a real benefit. The aim is to satisfy demand and gain extra profit, while achieving the required customer service level. Research effort has been put both in understanding the minimum features needed to satisfy the scheduling requirements in the industry and the overall existence of the market. A qualitative study was constructed to both identify competitive situation and the requirements vs. gaps on the market. It becomes clear that there is no such system on the marketplace today and also that there is room to improve target market overall process efficiency through such planning tool. This thesis also provides better overall understanding of the different processes in this particular industry for the case company.
Resumo:
Selostus: Ilmaston lämpenemisen vaikutus perunaruttoon
Resumo:
Summary
Resumo:
Environmentally harmful consequences of fossil fuel utilisation andthe landfilling of wastes have increased the interest among the energy producers to consider the use of alternative fuels like wood fuels and Refuse-Derived Fuels, RDFs. The fluidised bed technology that allows the flexible use of a variety of different fuels is commonly used at small- and medium-sized power plants ofmunicipalities and industry in Finland. Since there is only one mass-burn plantcurrently in operation in the country and no intention to build new ones, the co-firing of pre-processed wastes in fluidised bed boilers has become the most generally applied waste-to-energy concept in Finland. The recently validated EU Directive on Incineration of Wastes aims to mitigate environmentally harmful pollutants of waste incineration and co-incineration of wastes with conventional fuels. Apart from gaseous flue gas pollutants and dust, the emissions of toxic tracemetals are limited. The implementation of the Directive's restrictions in the Finnish legislation is assumed to limit the co-firing of waste fuels, due to the insufficient reduction of the regulated air pollutants in the existing flue gas cleaning devices. Trace metals emission formation and reduction in the ESP, the condensing wet scrubber, the fabric filter, and the humidification reactor were studied, experimentally, in full- and pilot-scale combustors utilising the bubbling fluidised bed technology, and, theoretically, by means of reactor model calculations. The core of the model is a thermodynamic equilibrium analysis. The experiments were carried out with wood chips, sawdust, and peat, and their refuse-derived fuel, RDF, blends. In all, ten different fuels or fuel blends were tested. Relatively high concentrations of trace metals in RDFs compared to the concentrations of these metals in wood fuels increased the trace metal concentrations in the flue gas after the boiler ten- to hundred-folds, when RDF was co-fired with sawdust in a full-scale BFB boiler. In the case of peat, lesser increase in trace metal concentrations was observed, due to the higher initial trace metal concentrations of peat compared to sawdust. Despite the high removal rate of most of the trace metals in the ESP, the Directive emission limits for trace metals were exceeded in each of the RDF co-firing tests. The dominat trace metals in fluegas after the ESP were Cu, Pb and Mn. In the condensing wet scrubber, the flue gas trace metal emissions were reduced below the Directive emission limits, whenRDF pellet was used as a co-firing fuel together with sawdust and peat. High chlorine content of the RDFs enhanced the mercuric chloride formation and hence the mercury removal in the ESP and scrubber. Mercury emissions were lower than theDirective emission limit for total Hg, 0.05 mg/Nm3, in all full-scale co-firingtests already in the flue gas after the ESP. The pilot-scale experiments with aBFB combustor equipped with a fabric filter revealed that the fabric filter alone is able to reduce the trace metal concentrations, including mercury, in the flue gas during the RDF co-firing approximately to the same level as they are during the wood chip firing. Lower trace metal emissions than the Directive limits were easily reached even with a 40% thermal share of RDF co-firing with sawdust.Enrichment of trace metals in the submicron fly ash particle fraction because of RDF co-firing was not observed in the test runs where sawdust was used as the main fuel. The combustion of RDF pellets with peat caused an enrichment of As, Cd, Co, Pb, Sb, and V in the submicron particle mode. Accumulation and release oftrace metals in the bed material was examined by means of a bed material analysis, mass balance calculations and a reactor model. Lead, zinc and copper were found to have a tendency to be accumulated in the bed material but also to have a tendency to be released from the bed material into the combustion gases, if the combustion conditions were changed. The concentration of the trace metal in the combustion gases of the bubbling fluidised bed boiler was found to be a summary of trace metal fluxes from three main sources. They were (1) the trace metal flux from the burning fuel particle (2) the trace metal flux from the ash in the bed, and (3) the trace metal flux from the active alkali metal layer on the sand (and ash) particles in the bed. The amount of chlorine in the system, the combustion temperature, the fuel ash composition and the saturation state of the bed material in regard to trace metals were discovered to be key factors affecting therelease process. During the co-firing of waste fuels with variable amounts of e.g. ash and chlorine, it is extremely important to consider the possible ongoingaccumulation and/or release of the trace metals in the bed, when determining the flue gas trace metal emissions. If the state of the combustion process in regard to trace metals accumulation and/or release in the bed material is not known,it may happen that emissions from the bed material rather than the combustion of the fuel in question are measured and reported.
Resumo:
The present study was done with two different servo-systems. In the first system, a servo-hydraulic system was identified and then controlled by a fuzzy gainscheduling controller. The second servo-system, an electro-magnetic linear motor in suppressing the mechanical vibration and position tracking of a reference model are studied by using a neural network and an adaptive backstepping controller respectively. Followings are some descriptions of research methods. Electro Hydraulic Servo Systems (EHSS) are commonly used in industry. These kinds of systems are nonlinearin nature and their dynamic equations have several unknown parameters.System identification is a prerequisite to analysis of a dynamic system. One of the most promising novel evolutionary algorithms is the Differential Evolution (DE) for solving global optimization problems. In the study, the DE algorithm is proposed for handling nonlinear constraint functionswith boundary limits of variables to find the best parameters of a servo-hydraulic system with flexible load. The DE guarantees fast speed convergence and accurate solutions regardless the initial conditions of parameters. The control of hydraulic servo-systems has been the focus ofintense research over the past decades. These kinds of systems are nonlinear in nature and generally difficult to control. Since changing system parameters using the same gains will cause overshoot or even loss of system stability. The highly non-linear behaviour of these devices makes them ideal subjects for applying different types of sophisticated controllers. The study is concerned with a second order model reference to positioning control of a flexible load servo-hydraulic system using fuzzy gainscheduling. In the present research, to compensate the lack of dampingin a hydraulic system, an acceleration feedback was used. To compare the results, a pcontroller with feed-forward acceleration and different gains in extension and retraction is used. The design procedure for the controller and experimental results are discussed. The results suggest that using the fuzzy gain-scheduling controller decrease the error of position reference tracking. The second part of research was done on a PermanentMagnet Linear Synchronous Motor (PMLSM). In this study, a recurrent neural network compensator for suppressing mechanical vibration in PMLSM with a flexible load is studied. The linear motor is controlled by a conventional PI velocity controller, and the vibration of the flexible mechanism is suppressed by using a hybrid recurrent neural network. The differential evolution strategy and Kalman filter method are used to avoid the local minimum problem, and estimate the states of system respectively. The proposed control method is firstly designed by using non-linear simulation model built in Matlab Simulink and then implemented in practical test rig. The proposed method works satisfactorily and suppresses the vibration successfully. In the last part of research, a nonlinear load control method is developed and implemented for a PMLSM with a flexible load. The purpose of the controller is to track a flexible load to the desired position reference as fast as possible and without awkward oscillation. The control method is based on an adaptive backstepping algorithm whose stability is ensured by the Lyapunov stability theorem. The states of the system needed in the controller are estimated by using the Kalman filter. The proposed controller is implemented and tested in a linear motor test drive and responses are presented.
Resumo:
In modem hitec industry Advanced Planning and Scheduling (APS) systems provide the basis for e-business solutions towards the suppliers and the customers. One objective of this thesis was to clarify the modem supply chain management with the APS systems and especially concentrate on the area of Collaborative Planning. In order Advanced Planning and Scheduling systems to be complete and usable, user interfaces are needed. Current Visual Basic user interfaces have faced many complaints and arguments from the users as well as from the development team. This thesis is trying to analyze the reasons and causes for the encountered problems and also provide ways to overcome them. The decision has been made to build the new user interfaces to be Web-enabled. Therefore another objective of this thesis was to research and find suitable technologies for building the Web-based user interfaces for Advanced Planning and Scheduling Systems in Nokia Demand/Supply Planning business area. Comparison between the most suitable technologies is made. Usability issues of Web-enabled user interfaces are also covered. The empirical part of the thesis includes design and implementation of a Web-based user interface with the chosen technology for a particular APS module that enables Collaborative Planning with suppliers.
Resumo:
Tutkielman tavoitteena on selvittää kuinka suunnitella ja hallita tehokasta verkkoviestintää, joka vastaa kohdeyleisön ja palvelun ylläpitäjien kasvaviin vaatimuksiin. Tutkielma on normatiivinen tapaustutkimus, jonka tuloksena syntyy konstruktiivinen askelmalli kokonaisvaltaisen verkkoviestintäprojektin toteuttamiseen. Tutkimus esittää myös teoreettisesti merkittävän näkökulman verkkopalvelujen sisällön hallintaongelmien ratkaisemiseen. Tosielämän verkkoviestintäprojektin toteutusta seurataan TietoEnator Forestissa, jossa tutkielman kirjoittaja työskentelee. Tutkimusmateriaalina käytetään 11 TietoEnator Forestissa toteutettua haastattelua, TietoEnator konsernin dokumentaatiota ja osallistuvaa havainnointia. Haastattelulomake sisältää 13 avointa kysymystä, jotka käsittelevät verkkoviestintästrategian perusasioita. Tunnistetut verkkoviestinnän avainmenestystekijät ovat vahva sisäinen sitoutuminen hajautettuihin ylläpitorooleihin ja perinpohjainen asiakastarpeiden tunnistaminen. Teknisesti on tärkeää, että eritason verkkoympäristöt, Internet, Intranet ja Extranet, hallitaan samoilla sisällönhallinta työkaluilla. Näin pystytään rationalisoimaan ylläpitotoiminnot.
Resumo:
Tutkielman tavoitteena on tarkastella uuden yritysidentiteetin suunnittelua ja käyttöönottoa maailmanlaajuisessa palveluyrityksessä. Tutkielma jakaantuu teoreettiseen ja empiiriseen osaan. Teoreettisessa osassa käsitellään yritysidentiteetin käsitettä sekä tarkastellaan uuden yritysidenteetin suunnittelua ja käyttöönottoa. Teoriaa tarkastellaan keskeisten kirjallisten lähteiden perusteella, jotka käsittelevät markkinoinnin johtamista, palveluyritystä, yritysidentiteettiä, imagoa ja brändiä. Empiirinen tarkastelu pohjautuu yritysesimerkkiin. Yritysesimerkkinä on maailmanlaajuinen palveluyritys, ja sen uuden yritysidentiteetin suunnittelu- ja lanseeraustoimenpiteet. Empiirinen aineisto perustuu markkinointipäälliköiden haastatteluihin Australiassa ja Suomessa sekä yrityksen sisäiseen suunnittelu- ja lanseerausmateriaaliin. Tutkielmassa tulee esille yritysidentiteettikäsitteen monimuotoisuus. Yritysidentiteetin rakentaminen lähtee visiosta, missiosta ja yrityksen tavoitteista, jotka pitää olla selkeät ja johdonmukaiset. Yritysidentiteetti käsittää visuaalisen ilmeen lisäksi kaikki ne prosessit, joissa ollaan tekemisissä sidosryhmien kanssa. Yritysidentiteetin rakentaminen ja ylläpitäminen vaatii, että jokainen liiketoimintafunktio ymmärtää yritysidenteetin sisällön ja toimii sen mukaisesti kaikissa tilanteissa. Yrityksen on viestittävä henkilöstölle ja ulkoisille sidosryhmilleen, miksi se on olemassa. Henkilöstön tulee ymmärtää yrityksen tapa toimia, jotta he pystyvät vastaamaan yrityksen asettamiin haasteisiin kohdatessaan asiakkaan. Uuden yritysidentiteetin suunnitteluun on panostettava. Onnistumisen edellytykseksi osoittautui, että suunnitellaan tarkasti toimenpiteet ennen käyttöönottoa, käyttöönoton aikana sekä käyttöönoton jälkeen.
Resumo:
Industry's growing need for higher productivity is placing new demands on mechanisms connected with electrical motors, because these can easily lead to vibration problems due to fast dynamics. Furthermore, the nonlinear effects caused by a motor frequently reduce servo stability, which diminishes the controller's ability to predict and maintain speed. Hence, the flexibility of a mechanism and its control has become an important area of research. The basic approach in control system engineering is to assume that the mechanism connected to a motor is rigid, so that vibrations in the tool mechanism, reel, gripper or any apparatus connected to the motor are not taken into account. This might reduce the ability of the machine system to carry out its assignment and shorten the lifetime of the equipment. Nonetheless, it is usually more important to know how the mechanism, or in other words the load on the motor, behaves. A nonlinear load control method for a permanent magnet linear synchronous motor is developed and implemented in the thesis. The purpose of the controller is to track a flexible load to the desired velocity reference as fast as possible and without awkward oscillations. The control method is based on an adaptive backstepping algorithm with its stability ensured by the Lyapunov stability theorem. As a reference controller for the backstepping method, a hybrid neural controller is introduced in which the linear motor itself is controlled by a conventional PI velocity controller and the vibration of the associated flexible mechanism is suppressed from an outer control loop using a compensation signal from a multilayer perceptron network. To avoid the local minimum problem entailed in neural networks, the initial weights are searched for offline by means of a differential evolution algorithm. The states of a mechanical system for controllers are estimated using the Kalman filter. The theoretical results obtained from the control design are validated with the lumped mass model for a mechanism. Generalization of the mechanism allows the methods derived here to be widely implemented in machine automation. The control algorithms are first designed in a specially introduced nonlinear simulation model and then implemented in the physical linear motor using a DSP (Digital Signal Processor) application. The measurements prove that both controllers are capable of suppressing vibration, but that the backstepping method is superior to others due to its accuracy of response and stability properties.