20 resultados para estimation method
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Työn tavoitteena oli kehittää tutkittavan insinööriyksikön projektien kustannusestimointiprosessia, siten että yksikön johdolla olisi tulevaisuudessa käytettävänään tarkempaa kustannustietoa. Jotta tämä olisi mahdollista, ensin täytyi selvittää yksikön toimintatavat, projektien kustannusrakenteet sekä kustannusatribuutit. Tämän teki mahdolliseksi projektien kustannushistoriatiedon tutkiminen sekä asiantuntijoiden haastattelu. Työn tuloksena syntyi kohdeyksikön muiden prosessien kanssa yhteensopiva kustannusestimointiprosessi sekä –malli.Kustannusestimointimenetelmän ja –mallin perustana on kustannusatribuutit, jotka määritellään erikseen tutkittavassa ympäristössä. Kustannusatribuutit löydetään historiatietoa tutkimalla, eli analysoimalla jo päättyneitä projekteja, projektien kustannusrakenteita sekä tekijöitä, jotka ovat vaikuttaneet kustannusten syntyyn. Tämän jälkeen kustannusatribuuteille täytyy määritellä painoarvot sekä painoarvojen vaihteluvälit. Estimointimallin tarkuutta voidaan parantaa mallin kalibroinnilla. Olen käyttänyt Goal – Question – Metric (GQM) –menetelmää tutkimuksen kehyksenä.
Resumo:
Mathematical models often contain parameters that need to be calibrated from measured data. The emergence of efficient Markov Chain Monte Carlo (MCMC) methods has made the Bayesian approach a standard tool in quantifying the uncertainty in the parameters. With MCMC, the parameter estimation problem can be solved in a fully statistical manner, and the whole distribution of the parameters can be explored, instead of obtaining point estimates and using, e.g., Gaussian approximations. In this thesis, MCMC methods are applied to parameter estimation problems in chemical reaction engineering, population ecology, and climate modeling. Motivated by the climate model experiments, the methods are developed further to make them more suitable for problems where the model is computationally intensive. After the parameters are estimated, one can start to use the model for various tasks. Two such tasks are studied in this thesis: optimal design of experiments, where the task is to design the next measurements so that the parameter uncertainty is minimized, and model-based optimization, where a model-based quantity, such as the product yield in a chemical reaction model, is optimized. In this thesis, novel ways to perform these tasks are developed, based on the output of MCMC parameter estimation. A separate topic is dynamical state estimation, where the task is to estimate the dynamically changing model state, instead of static parameters. For example, in numerical weather prediction, an estimate of the state of the atmosphere must constantly be updated based on the recently obtained measurements. In this thesis, a novel hybrid state estimation method is developed, which combines elements from deterministic and random sampling methods.
Resumo:
Fluid handling systems such as pump and fan systems are found to have a significant potential for energy efficiency improvements. To deliver the energy saving potential, there is a need for easily implementable methods to monitor the system output. This is because information is needed to identify inefficient operation of the fluid handling system and to control the output of the pumping system according to process needs. Model-based pump or fan monitoring methods implemented in variable speed drives have proven to be able to give information on the system output without additional metering; however, the current model-based methods may not be usable or sufficiently accurate in the whole operation range of the fluid handling device. To apply model-based system monitoring in a wider selection of systems and to improve the accuracy of the monitoring, this paper proposes a new method for pump and fan output monitoring with variable-speed drives. The method uses a combination of already known operating point estimation methods. Laboratory measurements are used to verify the benefits and applicability of the improved estimation method, and the new method is compared with five previously introduced model-based estimation methods. According to the laboratory measurements, the new estimation method is the most accurate and reliable of the model-based estimation methods.
Resumo:
Tutkimus keskittyy hankintatoimen kehittämiseen osana laitosprojektien toteutusta. Työ pohjautuu empiiriseltä taustaltaan Pöyry Oyj:n projektiliiketoimintaan ja työn tarkastelunäkökulmaksi onvalittu projektihallinnosta vastaavan yrityksen näkökulma. Tutkimus on hyvin käytännönläheinen ¿ se lähtee hankinnan ja sen seurannan ongelmista ja pyrkii tarjoamaan niihin uudenlaisia ratkaisuja. Pohjimmiltaan tutkimus kuuluu teollisuustalouden piiriin, vaikka tietojärjestelmätieteellä on vahva tukirooli. Työn tavoitteet ja tulokset liittyvät teollisuustaloudelle ominaisesti yrityksen toiminnan kehittämiseen, käytetyt välineet ja ratkaisut puolestaan hyödyntävät tietojärjestelmätieteen antamia mahdollisuuksia. Tutkimuksessa on käytetty konstruktiivista tutkimusotetta, jonka mukaisesti on luotu innovatiivisia konstruktioita ratkaisemaan aitoja reaalimaailman ongelmia ja tätä kautta tuotettu kontribuutioita teollisuustaloudelle. Tavoitteena oli järjestää hankintatoimi ja sen seuranta suurissa laitosprojekteissa tehokkaammin. Tätä varten uudistettiin ensin projektihallinnon ja hankintatoimen toimintaohjeet vastaamaan paremmin nykyajan vaatimuksia. Toimintaohjeiden perusteella ryhdyttiin toteuttamaan hankintaohjelmistoa, joka pystyisi kattamaan kaikki toimintaohjeissa kuvatut piirteet. Lopulta hankintaohjelmisto toi mukanaan uusia piirteitä projektihallintoon ja hankintatoimeen ja nämä sisällytettiin toimintaohjeisiin. Tähän kehitystyöhön ryhdyttiin, jotta laitosprojektien projektihallinto ja hankintatoimi toimisivat paremmin, eli pienemmin kustannuksin tuottaen projekteissa tarvittavat tulokset nopeammin, tarkemmin ja laadukkaammin. Tutkimuksella on kolmenlaisia tuloksia: hankintatoimen parannetut metodit, hankintaohjelmiston pohjana olevat toiminta- ja laskentamallit sekä implementaationa hankintasovellus. Uudistetut projekti- ja hankintaohjeet kuvaavat hankintatoiminnan parannettuja metodeja. Hankintaohjelmistoasuunnitellessa ja kehitettäessä tehdyt kuvaukset sisältävät uusia malleja niin hankintaprosessille kuin hankinnan seuraamiseksi suurissa laitosprojekteissa. Itse ohjelmisto on tuloksena implementaatio, joka perustuu parannettuihin hankintametodeihin ja uusiin toiminta- ja laskentamalleihin. Uudistetut projekti- ja hankintaohjeet ovat olleet käytössä Pöyry Oyj:ssä vuodesta 1991. Vuosien varrella nämä toimintaohjeet ovat auttaneet ja tukeneet satojen laitosprojektientoteutusta ja ylläpitäneet Pöyry Oyj:n kilpailukykyä kansainvälisenä projektitalona. Hankintasovellus puolestaan on ollut käytössä useissa projekteissa ja sen on havaittu pienentävän hankintatoimen suoria työkustannuksia laitosprojekteissa. Sovelluksen katsotaan myös tuovan epäsuoria kustannussäästöjä parempien hankintapäätösten muodossa, mutta näiden säästöjen suuruutta ei pystytä luotettavasti arvioimaan.
Resumo:
Thedirect torque control (DTC) has become an accepted vector control method besidethe current vector control. The DTC was first applied to asynchronous machines,and has later been applied also to synchronous machines. This thesis analyses the application of the DTC to permanent magnet synchronous machines (PMSM). In order to take the full advantage of the DTC, the PMSM has to be properly dimensioned. Therefore the effect of the motor parameters is analysed taking the control principle into account. Based on the analysis, a parameter selection procedure is presented. The analysis and the selection procedure utilize nonlinear optimization methods. The key element of a direct torque controlled drive is the estimation of the stator flux linkage. Different estimation methods - a combination of current and voltage models and improved integration methods - are analysed. The effect of an incorrect measured rotor angle in the current model is analysed andan error detection and compensation method is presented. The dynamic performance of an earlier presented sensorless flux estimation method is made better by improving the dynamic performance of the low-pass filter used and by adapting the correction of the flux linkage to torque changes. A method for the estimation ofthe initial angle of the rotor is presented. The method is based on measuring the inductance of the machine in several directions and fitting the measurements into a model. The model is nonlinear with respect to the rotor angle and therefore a nonlinear least squares optimization method is needed in the procedure. A commonly used current vector control scheme is the minimum current control. In the DTC the stator flux linkage reference is usually kept constant. Achieving the minimum current requires the control of the reference. An on-line method to perform the minimization of the current by controlling the stator flux linkage reference is presented. Also, the control of the reference above the base speed is considered. A new estimation flux linkage is introduced for the estimation of the parameters of the machine model. In order to utilize the flux linkage estimates in off-line parameter estimation, the integration methods are improved. An adaptive correction is used in the same way as in the estimation of the controller stator flux linkage. The presented parameter estimation methods are then used in aself-commissioning scheme. The proposed methods are tested with a laboratory drive, which consists of a commercial inverter hardware with a modified software and several prototype PMSMs.
Resumo:
Construction of multiple sequence alignments is a fundamental task in Bioinformatics. Multiple sequence alignments are used as a prerequisite in many Bioinformatics methods, and subsequently the quality of such methods can be critically dependent on the quality of the alignment. However, automatic construction of a multiple sequence alignment for a set of remotely related sequences does not always provide biologically relevant alignments.Therefore, there is a need for an objective approach for evaluating the quality of automatically aligned sequences. The profile hidden Markov model is a powerful approach in comparative genomics. In the profile hidden Markov model, the symbol probabilities are estimated at each conserved alignment position. This can increase the dimension of parameter space and cause an overfitting problem. These two research problems are both related to conservation. We have developed statistical measures for quantifying the conservation of multiple sequence alignments. Two types of methods are considered, those identifying conserved residues in an alignment position, and those calculating positional conservation scores. The positional conservation score was exploited in a statistical prediction model for assessing the quality of multiple sequence alignments. The residue conservation score was used as part of the emission probability estimation method proposed for profile hidden Markov models. The results of the predicted alignment quality score highly correlated with the correct alignment quality scores, indicating that our method is reliable for assessing the quality of any multiple sequence alignment. The comparison of the emission probability estimation method with the maximum likelihood method showed that the number of estimated parameters in the model was dramatically decreased, while the same level of accuracy was maintained. To conclude, we have shown that conservation can be successfully used in the statistical model for alignment quality assessment and in the estimation of emission probabilities in the profile hidden Markov models.
Resumo:
Pumppukäytöt vastaavat noin neljännestä Euroopan alueen sähkömoottoreissa kuluvasta energiasta. Energian hinnan nousun vuoksi energian säästäminen ja energiatehokkuus ovat nousseet tärkeään asemaan paljon energiaa kuluttavassa teollisuudessa. Pumppukäyttöjen hyötysuhteen parantaminen on noussut olennaiseen osaan paperi- ja kartonkiteollisuuden energiatehokkuustarkasteluissa. Tässä työssä tarkastellaan kartonkikoneen pumppukäyttöjen toiminnan energiatehokkuutta moottorin virtamittausten perusteella. Analyysi perustuu moottorin akselitehon määrittämiseen ja sen perusteella tehtävään pumpun toimintapisteen laskentaan. Työssä esitellään käytetyt estimointimenetelmät ja niillä saadut tulokset kartonkikoneen pumppukäytöille. Lisäksi työssä arvioidaan kolmen yksittäisen pumppukäytön energiankulutuksen säästöpotentiaalia. Työssä käytettyä menetelmää voidaan käyttää sekä vakio- että vaihtonopeuspumppukäyttöjen toiminnan ja hyötysuhteen analysointiin.
Resumo:
We provide an incremental quantile estimator for Non-stationary Streaming Data. We propose a method for simultaneous estimation of multiple quantiles corresponding to the given probability levels from streaming data. Due to the limitations of the memory, it is not feasible to compute the quantiles by storing the data. So estimating the quantiles as the data pass by is the only possibility. This can be effective in network measurement. To provide the minimum of the mean-squared error of the estimation, we use parabolic approximation and for comparison we simulate the results for different number of runs and using both linear and parabolic approximations.
Resumo:
Software engineering is criticized as not being engineering or 'well-developed' science at all. Software engineers seem not to know exactly how long their projects will last, what they will cost, and will the software work properly after release. Measurements have to be taken in software projects to improve this situation. It is of limited use to only collect metrics afterwards. The values of the relevant metrics have to be predicted, too. The predictions (i.e. estimates) form the basis for proper project management. One of the most painful problems in software projects is effort estimation. It has a clear and central effect on other project attributes like cost and schedule, and to product attributes like size and quality. Effort estimation can be used for several purposes. In this thesis only the effort estimation in software projects for project management purposes is discussed. There is a short introduction to the measurement issues, and some metrics relevantin estimation context are presented. Effort estimation methods are covered quite broadly. The main new contribution in this thesis is the new estimation model that has been created. It takes use of the basic concepts of Function Point Analysis, but avoids the problems and pitfalls found in the method. It is relativelyeasy to use and learn. Effort estimation accuracy has significantly improved after taking this model into use. A major innovation related to the new estimationmodel is the identified need for hierarchical software size measurement. The author of this thesis has developed a three level solution for the estimation model. All currently used size metrics are static in nature, but this new proposed metric is dynamic. It takes use of the increased understanding of the nature of the work as specification and design work proceeds. It thus 'grows up' along with software projects. The effort estimation model development is not possible without gathering and analyzing history data. However, there are many problems with data in software engineering. A major roadblock is the amount and quality of data available. This thesis shows some useful techniques that have been successful in gathering and analyzing the data needed. An estimation process is needed to ensure that methods are used in a proper way, estimates are stored, reported and analyzed properly, and they are used for project management activities. A higher mechanism called measurement framework is also introduced shortly. The purpose of the framework is to define and maintain a measurement or estimationprocess. Without a proper framework, the estimation capability of an organization declines. It requires effort even to maintain an achieved level of estimationaccuracy. Estimation results in several successive releases are analyzed. It isclearly seen that the new estimation model works and the estimation improvementactions have been successful. The calibration of the hierarchical model is a critical activity. An example is shown to shed more light on the calibration and the model itself. There are also remarks about the sensitivity of the model. Finally, an example of usage is shown.
Resumo:
Tutkimuksen tavoitteena oli rakentaa case yritykselle malli lyhyen aikavälin kannattavuuden estimointia varten. Tutkimusmetodi on konstruktiivinen, ja malli kehitettiin laskentaihmisten avustuksella. Teoriaosassa käytiin kirjallisuuskatsauksen avulla läpi kannattavuutta, budjetointia sekä itse ennustamista. Teoriaosassa pyrittiin löytämään sellaisia menetelmiä, joita voitaisiin käyttää lyhyen aikavälin kannattavuuden estimoinnissa. Rakennettavalle mallille asetettujen vaatimusten mukaan menetelmäksi valittiin harkintaan perustuva menetelmä (judgmental). Tutkimuksen mukaan kannattavuuteen vaikuttaa myyntihinta ja –määrä, tuotanto, raaka-aineiden hinnat ja varaston muutos. Rakennettu malli toimii kohdeyrityksessä kohtalaisen hyvin ja huomattavaa on se, että eri tehtaiden ja eri koneiden väliset erot saattavat olla kohtuullisen suuret. Nämä erot johtuvat pääasiassa tehtaan koosta ja mallien erilaisuudesta. Mallin käytännön toimivuus tulee kuitenkin parhaiten selville silloin, kun se on laskentaihmisten käytössä. Ennustamiseen liittyy kuitenkin aina omat ongelmansa ja uudetkaan menetelmät eivät välttämättä poista näitä ongelmia.
Resumo:
Cost estimation is an important, but challenging process when designing a new product or a feature of it, verifying the product prices given by suppliers or planning a cost saving actions of existing products. It is even more challenging when the product is highly modular, not a bulk product. In general, cost estimation techniques can be divided into two main groups - qualitative and quantitative techniques - which can further be classified into more detailed methods. Generally, qualitative techniques are preferable when comparing alternatives and quantitative techniques when cost relationships can be found. The main objective of this thesis was to develop a method on how to estimate costs of internally manufactured and commercial elevator landing doors. Because of the challenging product structure, the proposed cost estimation framework is developed under three different levels based on past cost information available. The framework consists of features from both qualitative and quantitative cost estimation techniques. The starting point for the whole cost estimation process is an unambiguous, hierarchical product structure so that the product can be classified into controllable parts and is then easier to handle. Those controllable parts can then be compared to existing past cost knowledge of similar parts and create as accurate cost estimates as possible by that way.
Resumo:
In the current economy situation companies try to reduce their expenses. One of the solutions is to improve the energy efficiency of the processes. It is known that the energy consumption of pumping applications range from 20 up to 50% of the energy usage in the certain industrial plants operations. Some studies have shown that 30% to 50% of energy consumed by pump systems could be saved by changing the pump or the flow control method. The aim of this thesis is to create a mobile measurement system that can calculate a working point position of a pump drive. This information can be used to determine the efficiency of the pump drive operation and to develop a solution to bring pump’s efficiency to a maximum possible value. This can allow a great reduction in the pump drive’s life cycle cost. In the first part of the thesis, a brief introduction in the details of pump drive operation is given. Methods that can be used in the project are presented. Later, the review of available platforms for the project implementation is given. In the second part of the thesis, components of the project are presented. Detailed description for each created component is given. Finally, results of laboratory tests are presented. Acquired results are compared and analyzed. In addition, the operation of created system is analyzed and suggestions for the future development are given.
Resumo:
Machine learning provides tools for automated construction of predictive models in data intensive areas of engineering and science. The family of regularized kernel methods have in the recent years become one of the mainstream approaches to machine learning, due to a number of advantages the methods share. The approach provides theoretically well-founded solutions to the problems of under- and overfitting, allows learning from structured data, and has been empirically demonstrated to yield high predictive performance on a wide range of application domains. Historically, the problems of classification and regression have gained the majority of attention in the field. In this thesis we focus on another type of learning problem, that of learning to rank. In learning to rank, the aim is from a set of past observations to learn a ranking function that can order new objects according to how well they match some underlying criterion of goodness. As an important special case of the setting, we can recover the bipartite ranking problem, corresponding to maximizing the area under the ROC curve (AUC) in binary classification. Ranking applications appear in a large variety of settings, examples encountered in this thesis include document retrieval in web search, recommender systems, information extraction and automated parsing of natural language. We consider the pairwise approach to learning to rank, where ranking models are learned by minimizing the expected probability of ranking any two randomly drawn test examples incorrectly. The development of computationally efficient kernel methods, based on this approach, has in the past proven to be challenging. Moreover, it is not clear what techniques for estimating the predictive performance of learned models are the most reliable in the ranking setting, and how the techniques can be implemented efficiently. The contributions of this thesis are as follows. First, we develop RankRLS, a computationally efficient kernel method for learning to rank, that is based on minimizing a regularized pairwise least-squares loss. In addition to training methods, we introduce a variety of algorithms for tasks such as model selection, multi-output learning, and cross-validation, based on computational shortcuts from matrix algebra. Second, we improve the fastest known training method for the linear version of the RankSVM algorithm, which is one of the most well established methods for learning to rank. Third, we study the combination of the empirical kernel map and reduced set approximation, which allows the large-scale training of kernel machines using linear solvers, and propose computationally efficient solutions to cross-validation when using the approach. Next, we explore the problem of reliable cross-validation when using AUC as a performance criterion, through an extensive simulation study. We demonstrate that the proposed leave-pair-out cross-validation approach leads to more reliable performance estimation than commonly used alternative approaches. Finally, we present a case study on applying machine learning to information extraction from biomedical literature, which combines several of the approaches considered in the thesis. The thesis is divided into two parts. Part I provides the background for the research work and summarizes the most central results, Part II consists of the five original research articles that are the main contribution of this thesis.
Resumo:
This study investigates futures market efficiency and optimal hedge ratio estimation. First, cointegration between spot and futures prices is studied using Johansen method, with two different model specifications. If prices are found cointegrated, restrictions on cointegrating vector and adjustment coefficients are imposed, to account for unbiasedness, weak exogeneity and prediction hypothesis. Second, optimal hedge ratios are estimated using static OLS, and time-varying DVEC and CCC models. In-sample and out-of-sample results for one, two and five period ahead are reported. The futures used in thesis are RTS index, EUR/RUB exchange rate and Brent oil, traded in Futures and options on RTS.(FORTS) For in-sample period, data points were acquired from start of trading of each futures contract, RTS index from August 2005, EUR/RUB exchange rate March 2009 and Brent oil October 2008, lasting till end of May 2011. Out-of-sample period covers start of June 2011, till end of December 2011. Our results indicate that all three asset pairs, spot and futures, are cointegrated. We found RTS index futures to be unbiased predictor of spot price, mixed evidence for exchange rate, and for Brent oil futures unbiasedness was not supported. Weak exogeneity results for all pairs indicated spot price to lead in price discovery process. Prediction hypothesis, unbiasedness and weak exogeneity of futures, was rejected for all asset pairs. Variance reduction results varied between assets, in-sample in range of 40-85 percent and out-of sample in range of 40-96 percent. Differences between models were found small, except for Brent oil in which OLS clearly dominated. Out-of-sample results indicated exceptionally high variance reduction for RTS index, approximately 95 percent.
Resumo:
Parameter estimation still remains a challenge in many important applications. There is a need to develop methods that utilize achievements in modern computational systems with growing capabilities. Owing to this fact different kinds of Evolutionary Algorithms are becoming an especially perspective field of research. The main aim of this thesis is to explore theoretical aspects of a specific type of Evolutionary Algorithms class, the Differential Evolution (DE) method, and implement this algorithm as codes capable to solve a large range of problems. Matlab, a numerical computing environment provided by MathWorks inc., has been utilized for this purpose. Our implementation empirically demonstrates the benefits of a stochastic optimizers with respect to deterministic optimizers in case of stochastic and chaotic problems. Furthermore, the advanced features of Differential Evolution are discussed as well as taken into account in the Matlab realization. Test "toycase" examples are presented in order to show advantages and disadvantages caused by additional aspects involved in extensions of the basic algorithm. Another aim of this paper is to apply the DE approach to the parameter estimation problem of the system exhibiting chaotic behavior, where the well-known Lorenz system with specific set of parameter values is taken as an example. Finally, the DE approach for estimation of chaotic dynamics is compared to the Ensemble prediction and parameter estimation system (EPPES) approach which was recently proposed as a possible solution for similar problems.