14 resultados para differentially heating
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Energy consumption and energy efficiency have become an issue. Energy consumption is rising all over the world and because of that, and the climate change, energy is becoming more and more expensive. Buildings are major consumers of energy, and inside the buildings the major consumers are heating, ventilation and air-conditioning systems. They usually run at constant speed without efficient control. In most cases HVAC equipment is also oversized. Traditionally heating, ventilation and air-conditioning systems have been sized to meet conditions that rarely occur. The theory part in this thesis represents the basics of life cycle costs and calculations for the whole life cycle of a system. It also represents HVAC systems, equipment, systems controls and ways to save energy in these systems. The empirical part of this thesis represents life cycle cost calculations for HVAC systems. With these calculations it is possible to compute costs for the whole life cycle for the wanted variables. Life cycle costs make it possible to compare which variable causes most of the costs from the whole life point of view. Life cycle costs were studied through two real life cases which were focused on two different kinds of HVAC systems. In both of these cases the renovations were already made, so that the comparison between the old and the new, now existing system would be easier. The study indicates that energy can be saved in HVAC systems by using variable speed drive as a control method.
Resumo:
Achievement of house heating efficiency is one of key questions in building construction field. Finland and nothern part of Russia have similar climate conditions that gives a reason for comparation of their house heating approaches. In this work main questions concerned to house heating energy efficiency are studied, building norms and standards of Russia and Finland are studied and compared from heat storage efficiency point of view, review of statistics is done, some different factors influencing house heating energy efficiency are derived.
Resumo:
The paper is focused on feasibility study and market review of small scale bioenergy heating plants in the Russian North-West region. The main focus is effective and competitive usage of low-grade wood for heating purposes in the region. As example of economical feasibility estimation it was chosen the project of reconstruction of small scale boiler plant in Leningrad region that Brofta Oy is planning to implement the nearest time. It includes calculation the payback time with and without interest, the estimation of probable investments, the evaluation of possible risks and research on the potential of small scale heating plants projects. Calculations show that the profitability of this kind of projects is high, but payback time is not very short, because of high level of initial investments. Though, the development of small scale bioenergy heating plants in the region is considered to be the best way to solve the problems of heat supply in small settlements using own biomass resources.
Resumo:
Electrical motors on a ship attackable to different factors which decrease these lifetimes. One of the main external factors on a ship which usually is a reason of the motor failure is a moisture condensation which decreases the motor winding insulation and increase a probability of the short circuit. Therefore, the protection against moisture is necessary for ship electrical motors. The motor should be protected against moisture all time when it does not operate. The necessity of such protection requires a lot of energy consumption. This master’s thesis is focused on the creation of the electrical motor thermal model and on the different methods of the motor protection against moisture analysis with energy consumption point of view.
Resumo:
The aim of this thesis was to study network structures and modularity among biofuel heating system manufacturers in the Finnish bioenergy sector by utilizing the perspectives of numerous Finnish bioenergy specialists. The study is qualitative due to the fact that the research material was gathered with semi-structured theme interviews during May and June 2010. The research methodology used in the thesis combines conceptual and action-oriented approach. Networks, value nets, and modularity were studied from different perspectives. Three network and platform strategies were discovered and a general network structure was formed. Moreover, benefits and disadvantages of networks and modularity among biofuel heating system manufacturers were illustrated. The analysis provides a comprehensive perception of the industry. The results of the research were constructed by implementing existing theories into practice. Also future recommendations for the biofuel heating system manufacturers were given. The results can be considered to be beneficial because the number of previous studies about the subject is relatively small. The reliability of the study is eminent because the number of the interviews was inclusive.
Resumo:
A district heating system comprises production facilities, a distribution network, and heat consumers. The utilization of new energy metering and reading system (AMR) is increasing constantly in district heating systems. This heuristic study shows how the AMR system can be exploited in finding optimization opportunities in district heating system. In this study, the district heating system is mainly considered from the viewpoint of operational optimization. The focus is on the core processes, heat production and distribution. Three objectives were set to this study. The first one was to examine general optimization opportunities in district heating systems. Second, to figure out the benefits of AMR for general optimization opportunities. Finally, to define a methodology for process improvement endeavors. This study shows, through a case study, the usefulness of AMR in specifying current deficiencies in a district heating system. Based on a literature review, the methodology for the improvement of business processes is presented. Additionally, some issues related to future competitiveness of district heating are concerned. As a conclusion, some optimization objectives are considered more desirable than others. Study shows that AMR is useful in the specification of optimization targets in the district heating system. Further steps in optimization process were not examined in detail. That would seem to be interesting topic for further studies.
Resumo:
A high-frequency cyclonverter acts as a direct ac-to-ac power converter circuit that does not require a diode bidge rectifier. Bridgeless topology makes it possible to remove forward voltage drop losses that are present in a diode bridge. In addition, the on-state losses can be reduced to 1.5 times the on-state resistance of switches in half-bridge operation of the cycloconverter. A high-frequency cycloconverter is reviewed and the charging effect of the dc-capacitors in ``back-to-back'' or synchronous mode operation operation is analyzed. In addition, a control method is introduced for regulating dc-voltage of the ac-side capacitors in synchronous operation mode. The controller regulates the dc-capacitors and prevents switches from reaching overvoltage level. This can be accomplished by variating phase-shift between the upper and the lower gate signals. By adding phase-shift between the gate signal pairs, the charge stored in the energy storage capacitors can be discharged through the resonant load and substantially, the output resonant current amplitude can be improved. The above goals are analyzed and illustrated with simulation. Theory is supported with practical measurements where the proposed control method is implemented in an FPGA device and tested with a high-frequency cycloconverter using super-junction power MOSFETs as switching devices.
Resumo:
The objective of this master’s thesis was to design and simulate a wind powered hydraulic heating system that can operate independently in remote places where the use of electricity is not possible. Components for the system were to be selected in such a way that the conditions for manufacture, use and economic viability are the as good as possible. Savonius rotor was chosen for wind turbine, due to its low cut in speed and robust design. Savonius rotor produces kinetic energy in wide wind speed range and it can withstand high wind gusts. Radial piston pump was chosen for the flow source of the hydraulic heater. Pump type was selected due to its characteristics in low rotation speeds and high efficiency. Volume flow from the pump is passed through the throttle orifice. Pressure drop over the orifice causes the hydraulic oil to heat up and, thus, creating thermal energy. Thermal energy in the oil is led to radiator where it conducts heat to the environment. The hydraulic heating system was simulated. For this purpose a mathematical models of chosen components were created. In simulation wind data gathered by Finnish meteorological institute for 167 hours was used as input. The highest produced power was achieved by changing the orifice diameter so that the rotor tip speed ratio follows the power curve. This is not possible to achieve without using electricity. Thus, for the orifice diameter only one, the optimal value was defined. Results from the simulation were compared with investment calculations. Different parameters effecting the investment profitability were altered in sensitivity analyses in order to define the points of investment profitability. Investment was found to be profitable only with high average wind speeds.
Resumo:
The aim of this project was to develop general framework for systematic assessment of energy efficiency of heating on regional level in Russia. The framework created during this project includes two main instruments, namely: general regional heating energy efficiency assessment model (REEMod) and general regional heating energy efficiency assessment criteria for housing areas (REECrit). Framework pays extreme attention to realization of energy saving, overall cost efficiency and comfortable indoor climate. Life-cycle ideology was applied during creation of the framework. Application of the framework can provide decision-making process with systematically collected and processed information on current state of areas energy efficiency. Such information will help decision makers to evaluate current situation of the whole energy chain, to compare different development scenarios and to identify the most efficient improvement methods, thus supporting realization of regions efficient energy management. Simultaneous pursuit of energy savings, cost efficiency and indoor air quality can contribute to development of sustainable community. Presented instruments should be continuously developed further as an iterative process based on knew experience, development of technology and overall understanding of energy efficiency issues.
Resumo:
The purpose of this Thesis is to find the most optimal heat recovery solution for Wärtsilä’s dynamic district heating power plant considering Germany energy markets as in Germany government pays subsidies for CHP plants in order to increase its share of domestic power production to 25 % by 2020. Different heat recovery connections have been simulated dozens to be able to determine the most efficient heat recovery connections. The purpose is also to study feasibility of different heat recovery connections in the dynamic district heating power plant in the Germany markets thus taking into consideration the day ahead electricity prices, district heating network temperatures and CHP subsidies accordingly. The auxiliary cooling, dynamical operation and cost efficiency of the power plant is also investigated.
Resumo:
A support ring of AISI 304L stainless steel that holds vertical, parallel wires arranged in a circle forming a cylinder is studied. The wires are attached to the ring with heat-induced shrinkage. When the ring is heated with a torch the heat affected zone tries to expand while the adjacent cool structure obstructs the expansion causing upsetting. During cooling, the ring shrinks smaller than its original size clamping the wires. The most important requirement for the ring is that it should be as round as possible and the deformations should occur as overall shrinkage in the ring diameter. A three-dimensional nonlinear transient sequential thermo-structural Abaqus model is used together with a Fortran code that enters the heat flux to each affected element. The local and overall deformations in one ring inflicted by the heating are studied with a small amount of inspection on residual stresses. A variety of different cases are chosen to be studied with the model constructed to provide directional knowledge; torch flux with the means of speed, location of the wires, heating location and structural factors. The decrease of heating speed increases heat flux that rises the temperature increasing shrinkage. In a single progressive heating uneven distribution of shrinkage appears to the start/end region that can be partially fixed with using speeded heating’s to strengthen the heating of that region. Location of the wires affect greatly to the caused shrinkage unlike heating location. The ring structure affects also greatly to the shrinkage; smaller diameter, bigger ring height, thinner thickness and greater number of wires increase shrinkage.
Resumo:
The growing population in cities increases the energy demand and affects the environment by increasing carbon emissions. Information and communications technology solutions which enable energy optimization are needed to address this growing energy demand in cities and to reduce carbon emissions. District heating systems optimize the energy production by reusing waste energy with combined heat and power plants. Forecasting the heat load demand in residential buildings assists in optimizing energy production and consumption in a district heating system. However, the presence of a large number of factors such as weather forecast, district heating operational parameters and user behavioural parameters, make heat load forecasting a challenging task. This thesis proposes a probabilistic machine learning model using a Naive Bayes classifier, to forecast the hourly heat load demand for three residential buildings in the city of Skellefteå, Sweden over a period of winter and spring seasons. The district heating data collected from the sensors equipped at the residential buildings in Skellefteå, is utilized to build the Bayesian network to forecast the heat load demand for horizons of 1, 2, 3, 6 and 24 hours. The proposed model is validated by using four cases to study the influence of various parameters on the heat load forecast by carrying out trace driven analysis in Weka and GeNIe. Results show that current heat load consumption and outdoor temperature forecast are the two parameters with most influence on the heat load forecast. The proposed model achieves average accuracies of 81.23 % and 76.74 % for a forecast horizon of 1 hour in the three buildings for winter and spring seasons respectively. The model also achieves an average accuracy of 77.97 % for three buildings across both seasons for the forecast horizon of 1 hour by utilizing only 10 % of the training data. The results indicate that even a simple model like Naive Bayes classifier can forecast the heat load demand by utilizing less training data.
Resumo:
It is common knowledge of the world’s dependency on fossil fuel for energy, its unsustainability on the long run and the changing trend towards renewable energy as an alternative energy source. This aims to cut down greenhouse gas emission and its impact on the rate of ecological and climatic change. Quite remarkably, wind energy has been one of many focus areas of renewable energy sources and has attracted lots of investment and technological advancement. The objective of this research is to explore wind energy and its application in household heating. This research aims at applying experimental approach in real time to study and verify a virtually simulated wind powered hydraulic house heating system. The hardware components comprise of an integrated hydraulic pump, flow control valve, hydraulic fluid and other hydraulic components. The system design and control applies hardware in-the-loop (HIL) simulation setup. Output signal from the semi-empirical turbine modelling controls the integrated motor to generate flow. Throttling the volume flow creates pressure drop across the valve and subsequently thermal power in the system to be outputted using a heat exchanger. Maximum thermal power is achieved by regulating valve orifice to achieve optimum system parameter. Savonius rotor is preferred for its low inertia, high starting torque and ease of design and maintenance characteristics, but lags in power efficiency. A prototype turbine design is used; with power output in range of practical Savonius turbine. The physical mechanism of the prototype turbine’s augmentation design is not known and will not be a focus in this study.
Resumo:
The purpose of this Master´s Thesis is to develop asset management and its practices in case company. District heating and cooling systems operated by case company around Finland, Sweden, Poland and the Baltics form an enormous-sized asset base where some parts are starting to reach their end of life-cycles. Large-sized asset renewal actions are under discussion and maintenance spending is increasing. Financially justified decisions in changing business environment are needed. Asset management is one of the most important concepts for production organization which operates with capital-intensive production assets. Organizations profitability is highly dependent on assets´ performance. Such assets, like district heating and cooling systems, should be utilized as efficiently as possible within their life-cycles but also maintained and renewed optimally. In this qualitative thesis, empirical interview study was conducted to describe the current situation on how the assets are managed in the case company and to examine the readiness to implement a new, risk-based solution. Asset management revealed to be a very well-known concept. From proposed risk-based asset management point of view, several key observations were made. It was seen as a suitable solution, but further development will be needed. Based on the need and findings, several key processes and frameworks were created and also tested with a case study. Assets` condition monitoring should be improved, which would have a positive impact on event probability assessment. Risk acceptance is also a thing to be discussed further. When the evaluation becomes fluent in single investment cases, portfolio-level expansion should be considered and started. As a result, thesis proposes a solution how risk-based asset management could be performed practically in a capital-intensive case company in order to optimize the maintenance spending in a long run. Created practical framework is made universal: similar principles can be applied into multiple cases in case company but also in other energy companies. Risk-based asset management`s benefits could be utilized best in portfolio-level optimization where the capital would be invested to the most important objects from total risk point of view. Eventually, such approach would allow case company to optimize capital spending in a situation where funds are not adequate to cover all the mandatory needs and prioritization between the investment alternatives will truly be needed.