173 resultados para decentralized energy production
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The energy system of Russia is the world's fourth largest measured by installed power. The largest are that of the the United States of America, China and Japan. After 1990, the electricity consumption decreased as a result of the Russian industry crisis. The vivid economic growth during the latest few years explains the new increase in the demand for energy resources within the State. In 2005 the consumption of electricity achieved the maximum level of 1990 and continues to growth. In the 1980's, the renewal of power facilities was already very slow and practically stopped in the 1990's. At present, the energy system can be very much characterized as outdated, inefficient and uneconomic because of the old equipment, non-effective structure and large losses in the transmission lines. The aim of Russia's energy reform, which was started in 2001, is to achieve a market based energy policy by 2011. This would thus remove the significantly state-controlled monopoly in Russia's energy policy. The reform will stimulateto decrease losses, improve the energy system and employ energy-saving technologies. The Russian energy system today is still based on the use of fossil fuels, and it almost totally ignores the efficient use of renewable sources such as wind, solar, small hydro and biomass, despite of their significant resources in Russia. The main target of this project is to consider opportunities to apply renewable energy production in the North-West Federal Region of Russia to partly solve the above mentioned problems in the energy system.
Resumo:
Työ käsittelee energian tuotannossa esiintyviä tärkeimpiä taloudellisia ja teknisiä riskejä sekä niiden hallitsemista energian tuottajan näkökulmasta. Ensiksi käsitellään yleisesti riskienhallintaa, eri riskityyppejä ja esitetään periaatteellinen riskienhallintaprosessi. Sen jälkeen tarkastellaan energiamarkkinoiden nykytilannetta lähinnä Pohjoismaiden tasolla ja verrataan sitä aikaisempaan tilanteeseen energian tuottajan kannalta. Tämä siksi, että energiamarkkinoiden vapautuminen on muuttanut merkittävästi energian tuotantoon liittyviä taloudellisia riskejä, käytännössä lisännyt niitä. Pääpaino on energian tuotannossa esiintyvien olennaisten riskien tarkastelussa ja niiden hallitsemisessa. Ensin esitellään työn kannalta olennaiset riskit ja tekijät joista ne aiheutuvat. Jokainen riski ja sen aiheuttamat haitat liiketoiminnalle kuvataan lyhyesti. Sen jälkeen kiinnitetään huomiota asioihin, jotka ovat tyypillisiä energian tuotannolle ja aiheuttavat samalla erikoisvaatimuksia riskienhallinnalle. Sitten käydään läpi sopivat riskienhallinnan menetelmät, jotka ovat yleisesti käytössä energian tuotannossa, aiemmin esitetyille olennaisille riskeille. Esitetyistä riskienhallinta menetelmistä useimpia ei ole kohdistettu millekään yksittäiselle riskille, vaan monia niistä voidaan käyttää useammankin riskin hallintaan.
Resumo:
Traditionally, fossil fuels have always been the major sources of the modern energy production. However prices on these energy sources have been constantly increasing. The utilization of local biomass resources for energy production can substitute significant part of the required energy demand in different energy sectors. The introduction of the biomass usage can easily be started in the forest industry first as it possesses biomass in a large volume. The forest industry energy sector has the highest potential for the fast bioenergy development in the North-West Russia. Therefore, the question concerning rational and effective forest resources use is important today as well as the utilization of the forestry by-products. This work describes and analyzes the opportunities of utilising biomass, mainly, in the form of the wood by-products, for energy production processes in general, as well as for the northwest Russian forest industry conditions. The study also covers basic forest industry processes and technologies, so, the reader can get familiar with the information about the specific character of the biomass utilization. The work gives a comprehensive view on the northwest forest industry situation from the biomass utilisation point of view. By presenting existing large-scale sawmills and pulp and paper mills the work provides information for the evaluation of the future development of CHP investments in the northwest Russian forest industry.
Resumo:
Emission trading with greenhouse gases and green certificates are part if the climate policy the main target of which is reduce greenhouse gas emissions. The carbon dioxide and fine particle emissions of energy production in Helsinki Metropolitan area are calculated in this study. The analysis is made mainly by district heating point of view and the changes of the district heating network are assessed. Carbon dioxide emissions would be a bit higher, if the district heating network is expanded, but then the fine particle emissions would be much lower. Carbon dioxide emissions are roughly 10 % higher, if the district heating network is expanded at same rate as it has in past five years in the year 2030. The expansion of district heating network would decrease the fine particle emissions about 40 %. The cost of the expansion is allocated to be reduction cost of the fine particle emissions, which is considerably higher than the traditional reduction methods costs. The possible new nuclear plant would reduce the emissions considerably and the costs of the nuclear plant would be relatively low comparing the other energy production methods.
Resumo:
The environmental impact of landfill is a growing concern in waste management practices. Thus, assessing the effectiveness of the solutions implemented to alter the issue is of importance. The objectives of the study were to provide an insight of landfill advantages, and to consolidate landfill gas importance among others alternative fuels. Finally, a case study examining the performances of energy production from a land disposal at Ylivieska was carried out to ascertain the viability of waste to energy project. Both qualitative and quantitative methods were applied. The study was conducted in two parts; the first was the review of literatures focused on landfill gas developments. Specific considerations were the conception of mechanism governing the variability of gas production and the investigation of mathematical models often used in landfill gas modeling. Furthermore, the analysis of two main distributed generation technologies used to generate energy from landfill was carried out. The review of literature revealed a high influence of waste segregation and high level of moisture content for waste stabilization process. It was found that the enhancement in accuracy for forecasting gas rate generation can be done with both mathematical modeling and field test measurements. The result of the case study mainly indicated the close dependence of the power output with the landfill gas quality and the fuel inlet pressure.
Resumo:
At the end of the 1990s the stock breeding in the Europe was suffering from the animal disease epidemics such as Bovine spongiform encephalopathy (BSE) and foot –and mouth disease. The European Union (EU) tackled to this problem by tightening the legislation of animal by-products. At this point, rendering and fat producing industries faces new challenges, which they have to cope with in a way of trying to find alternatives to their products (animal fats and meat and bone meal). One of the most promising alternatives to utilize these products was to use them in energy production purposes. The purpose of the Thesis was to examine the utilization possibilities of Meat and bone meal (MBM) for energy production. The first part of the Thesis consists of theory part. The theory part includes evaluation of basic properties of MBM as a fertilizer and as a fuel, legislative evaluation and evaluation of different burning techniques. The second part of the Thesis consists of burning tests in Energy laboratory of LUT with different mixtures of peat and MBM. The purpose of the burning tests was to identify co-firing possibilities of peat and MBM and emission- and ash properties for peat and MBM.
Resumo:
Kandidaatintyön tarkoituksena oli perehtyä puubiomassan kaasutukseen perustuvaan hajautettuun energiantuotantoon. Työssä tarkasteltiin erilaisia kaasutustekniikoita sekä pohdittiin pientuotannon kannattavuutta ja kaasutusalan kehitysnäkymiä kirjallisuusmateriaalin avulla. Työssä selvisi, että paras tämän hetken pienkaasutusvoimalasovellus koostuu myötävirtakaasuttimesta ja lisäksi joko polttomoottorista tai mikroturbiinista. Kaasutusvoimalan suurin etu hajautetussa energiantuotannossa on omavarainen sähkön- ja lämmöntuotanto. Lisäksi kirjallisuuden mukaan sähköntuotantohyötysuhde on parempi kaasutukseen perustuvassa sähköntuotannossa kuin suoraan polttoon perustuvassa sähköntuotannossa. Ongelmana kaasutuksessa ovat tuotekaasun epäpuhtaudet, etenkin terva ja tuhka, jotka likaavat ja vioittavat kaasuttimen ja sähköntuotantoyksikön osia. Alle 100 kWe:n laitoksissa tuotekaasun puhdistusyksikön investointikustannukset ovat merkittävä osa kokonaisinvestointia. Suomen markkinoillakin on jo saatavilla muutamia kaasutusvoimaloita esimerkiksi maatalouden käyttöön. Kiinnostusta kaasutusalalle on runsaasti ja kaasutusteknologiaa pyritään jatkuvasti kehittämään pilottihankkeiden avulla.
Resumo:
This study focused on identifying various system boundaries and evaluating methods of estimating energy performance of biogas production. First, the output-input ratio method used for evaluating energy performance from the system boundaries was reviewed. Secondly, ways to assess the efficiency of biogas use and parasitic energy demand were investigated. Thirdly, an approach for comparing biogas production to other energy production methods was evaluated. Data from an existing biogas plant, located in Finland, was used for the evaluation of the methods. The results indicate that calculating and comparing the output-input ratios (Rpr1, Rpr2, Rut, Rpl and Rsy) can be used in evaluating the performance of biogas production system. In addition, the parasitic energy demand calculations (w) and the efficiency of utilizing produced biogas (η) provide detailed information on energy performance of the biogas plant. Furthermore, Rf and energy output in relation to total solid mass of feedstock (FO/TS) are useful in comparing biogas production with other energy recovery technologies. As a conclusion it is essential for the comparability of biogas plants that their energy performance would be calculated in a more consistent manner in the future.
Resumo:
The greatest threat that the biodegradable waste causes on the environment is the methane produced in landfills by the decomposition of this waste. The Landfill Directive (1999/31/EC) aims to reduce the landfilling of biodegradable waste. In Finland, 31% of biodegradable municipal waste ended up into landfills in 2012. The pressure of reducing disposing into landfills is greatly increased by the forthcoming landfill ban on biodegradable waste in Finland. There is a need to discuss the need for increasing the utilization of biodegradable waste in regional renewable energy production to utilize the waste in a way that allows the best possibilities to reduce GHG emissions. The objectives of the thesis are: (1) to find important factors affecting renewable energy recovery possibilities from biodegradable waste, (2) to determine the main factors affecting the GHG balance of biogas production system and how to improve it and (3) to find ways to define energy performance of biogas production systems and what affects it. According to the thesis, the most important factors affecting the regional renewable energy possibilities from biodegradable waste are: the amount of available feedstock, properties of feedstock, selected utilization technologies, demand of energy and material products and the economic situation of utilizing the feedstocks. The biogas production by anaerobic digestion was seen as the main technology for utilizing biodegradable waste in agriculturally dense areas. The main reason for this is that manure was seen as the main feedstock, and it can be best utilized with anaerobic digestion, which can produce renewable energy while maintaining the spreading of nutrients on arable land. Biogas plants should be located close to the heat demand that would be enough to receive the produced heat also in the summer months and located close to the agricultural area where the digestate could be utilized. Another option for biogas use is to upgrade it to biomethane, which would require a location close to the natural gas grid. The most attractive masses for biogas production are municipal and industrial biodegradable waste because of gate fees the plant receives from them can provide over 80% of the income. On the other hand, directing gate fee masses for small-scale biogas plants could make dispersed biogas production more economical. In addition, the combustion of dry agricultural waste such as straw would provide a greater energy amount than utilizing them by anaerobic digestion. The complete energy performance assessment of biogas production system requires the use of more than one system boundary. These can then be used in calculating output–input ratios of biogas production, biogas plant, biogas utilization and biogas production system, which can be used to analyze different parts of the biogas production chain. At the moment, it is difficult to compare different biogas plants since there is a wide variation of definitions for energy performance of biogas production. A more consistent way of analyzing energy performance would allow comparing biogas plants with each other and other recovery systems and finding possible locations for further improvement. Both from the GHG emission balance and energy performance point of view, the energy consumption at the biogas plant was the most significant factor. Renewable energy use to fulfil the parasitic energy demand at the plant would be the most efficient way to reduce the GHG emissions at the plant. The GHG emission reductions could be increased by upgrading biogas to biomethane and displacing natural gas or petrol use in cars when compared to biogas CHP production. The emission reductions from displacing mineral fertilizers with digestate were seen less significant, and the greater N2O emissions from spreading digestate might surpass the emission reductions from displacing mineral fertilizers.
Resumo:
Finland has large forest fuel resources. However, the use of forest fuels for energy production has been low, except for small-scale use in heating. According to national action plans and programs related to wood energy promotion, the utilization of such resources will be multiplied over the next few years. The most significant part of this growth will be based on the utilization of forest fuels, produced from logging residues of regeneration fellings, in industrial and municipal power and heating plants. Availability of logging residues was analyzed by means of resource and demand approaches in order to identify the most suitable regions with focus on increasing the forest fuel usage. The analysis included availability and supply cost comparisons between power plant sites and resource allocation in a least cost manner, and between a predefined power plant structure under demand and supply constraints. Spatial analysis of worksite factors and regional geographies were carried out using the GIS-model environment via geoprocessing and cartographic modeling tools. According to the results of analyses, the cost competitiveness of forest fuel supply should be improved in order to achieve the designed objectives in the near future. Availability and supply costs of forest fuels varied spatially and were very sensitive to worksite factors and transport distances. According to the site-specific analysis the supply potential between differentlocations can be multifold. However, due to technical and economical reasons ofthe fuel supply and dense power plant infrastructure, the supply potential is limited at plant level. Therefore, the potential and supply cost calculations aredepending on site-specific matters, where regional characteristics of resourcesand infrastructure should be taken into consideration, for example by using a GIS-modeling approach constructed in this study.
Resumo:
Energy industry has gone through major changes globally in past two decades. Liberalization of energy markets has led companies to integrate both vertically and horizontally. Growing concern on sustainable development and aims to decrease greenhouse gases in future will increase the portion of renewable energy in total energy production. Purpose of this study was to analyze using statistical methods, what impacts different strategic choices has on biggest European and North American energy companies’ performance. Results show that vertical integration, horizontal integration and use of renewable energy in production had the most impact on profitability. Increase in level of vertical integration decreased companies’ profitability, while increase in horizontal integration improved companies’ profitability. Companies that used renewable energy in production were less profitable than companies not using renewable energy.
Resumo:
Matalaenergiarakentaminen asettaa uudenlaisia haasteita ja mahdollisuuksia lämpöenergian tuotannolle. Lämmitysjärjestelmien mitoitustehot eivät laske samassa suhteessa kuin lämmitysenergiankulutus, mikä suosii alhaisia investointeja muuttuvien kulujen kustannuksella. Työssä tutkittiin viittä vaihtoehtoista tapaa tuottaa kohdealueen rakennuskannan vuotuinen lämpöenergiantarve. Kohdealue koostui pääasiallisesti matalaenergiakerrostaloista. Neljä vaihtoehtoa perustui kaukolämpöön ja yksi matalaenergiaverkkoon varustettuna kiinteistökohtaisilla lämpöpumpuilla. Lähialueen jätevedenpuhdistamolle sijoitettu keskitetty lämpöpumppuratkaisu muodostui kokonaiskustannuksiltaan edullisimmaksi vaihtoehdoksi tuottaa kohdealueen rakennuskannan lämpöenergiantarve. Haketta polttoaineenaan käyttävä pien-CHPlaitos omasi vastaavasti pienimmän hiilijalanjäljen, mutta oli kustannusrakenteeltaan epäedullinen. Kohdealue ja vaihtoehtoiset lämmitysjärjestelmät mallinnettiin GaBi 4.3 elinkaarimallinnusohjelmistolla vaihtoehtojen hiilijalanjälkien selvittämiseksi.
Resumo:
In this thesis a control system for an intelligent low voltage energy grid is presented, focusing on the control system created by using a multi-agent approach which makes it versatile and easy to expand according to the future needs. The control system is capable of forecasting the future energy consumption and decisions making on its own without human interaction when countering problems. The control system is a part of the St. Petersburg State Polytechnic University’s smart grid project that aims to create a smart grid for the university’s own use. The concept of the smart grid is interesting also for the consumers as it brings new possibilities to control own energy consumption and to save money. Smart grids makes it possible to monitor the energy consumption in real-time and to change own habits to save money. The intelligent grid also brings possibilities to integrate the renewable energy sources to the global or the local energy production much better than the current systems. Consumers can also sell their extra power to the global grid if they want.
Resumo:
The aim of this report is to describe the current status of the waste-to-energy chain in the province of Northern Savonia in Finland. This work is part of the Baltic Sea Region Programme project Remowe-Regional Mobilizing of Sustainable Waste-to-Energy Production (2009-2012). Partnering regions across Baltic Sea countries have parallelly investigated the current status, bottle-necks and needs for development in their regions. Information about the current status is crucial for the further work within the Remowe project, e.g. in investigating the possible future status in target regions. Ultimate result from the Northern Savonia point of view will be a regional model which utilizes all available information and facilitates decision-making concerning energy utilization of waste. The report contains information on among others: - waste management system (sources, amounts, infrastructure) - energy system (use, supply, infrastructure) - administrative structure and legislation - actors and stakeholders in the waste-to-energy field, including interest and development ideas The current status of the regions will be compared in a separate Remowe report, with the focus on finding best practices that could be transferred among the regions. In this report, the current status has been defined as 2006-2009. In 2009, the municipal waste amount per capita was 479 kg/inhabitant in Finland. Industrial waste amounted 3550 kg/inhabitant, respectively. The potential bioenergy from biodegradable waste amounts 1 MWh/inhabitant in Northern Savonia. This figure includes animal manure, crops that would be suitable for energy use, sludge from municipal sewage treatment plants and separately collected biowaste. A key strategy influencing also to Remowe work is the waste plan for Eastern Finland. Currently there operate two digestion plants in Northern Savonia: Lehtoniemi municipal sewage treatment sludge digestion plant of Kuopion Vesi and the farm-scale research biogas plant of Agrifood Research Finland in Maaninka. Moreover, landfill gas is collected to energy use from Heinälamminrinne waste management centre and Silmäsuo closed landfill site, both belonging to Jätekukko Oy. Currently there is no thermal utilization of waste in Northern Savonia region. However, Jätekukko Oy is pretreating mixed waste and delivering refuse derived fuel (RDF) to Southern Finland to combustion. There is a strong willingness among seven regional waste management companies in Eastern Finland to build a waste incineration plant to Riikinneva waste management centre near city of Varkaus. The plant would use circulating fluidized bed (CFB) boiler. This would been a clear boost in waste-to-energy utilization in Northern Savonia and in many surrounding regions.