14 resultados para data accuracy
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
There are two main objects in this study: First, to prove the importance of data accuracy to the business success, and second, create a tool for observing and improving the accuracy of ERP systems production master data. Sub-objective is to explain the need for new tool in client company and the meaning of it for the company. In the theoretical part of this thesis the focus is in stating the importance of data accuracy in decision making and it's implications on business success. Also basics of manufacturing planning are introduced in order to explain the key vocabulary. In the empirical part the client company and its need for this study is introduced. New master data report is introduced, and finally, analysing the report and actions based on the results of analysis are explained. The main results of this thesis are finding the interdependence between data accuracy and business success, and providing a report for continuous master data improvement in the client company's ERP system.
Resumo:
Inventory data management is defined as an accurate creation and maintenance of item master data, inventory location data and inventory balances per an inventory location. The accuracy of inventory data is dependent of many elements of the product data management like the management of changes during a component’s life-cycle and the accuracy of product configuration in enterprise resource planning systems. Cycle-counting is counting of inventory balances per an inventory location and comparing them to the system data on a daily basis. The Cycle-counting process is a way to measure the accuracy of the inventory data in a company. Through well managed cycle-counting process a company gets a lot of information of their inventory data accuracy. General inaccuracy of the inventory data can’t be fixed through only assigning resources to the cycle-counting but the change requires disciplined following of the defined processes from all parties involved in updating inventory data through a component’s life-cycle. The Processes affecting inventory data are mapped and the appropriate metrics are defined in order to achieve better manageability of the inventory data. The Life-cycles of a single component and of a product are used in evaluation of the processes.
Researching Manufacturing Planning and Control system and Master Scheduling in a manufacturing firm.
Resumo:
The objective of this thesis is to research Manufacturing Planning and Control (MPC) system and Master Scheduling (MS) in a manufacturing firm. The study is conducted at Ensto Finland Corporation, which operates on a field of electrical systems and supplies. The paper consists of theoretical and empirical parts. The empirical part is based on weekly operating at Ensto and includes inter-firm material analysis, learning and meetings. Master Scheduling is an important module of an MPC system, since it is beneficial on transforming strategic production plans based on demand forecasting into operational schedules. Furthermore, capacity planning tools can remarkably contribute to production planning: by Rough-Cut Capacity Planning (RCCP) tool, a MS plan can be critically analyzed in terms of available key resources in real manufacturing environment. Currently, there are remarkable inefficiencies when it comes to Ensto’s practices: the system is not able to take into consideration seasonal demand and react on market changes on time; This can cause significant lost sales. However, these inefficiencies could be eliminated through the appropriate utilization of MS and RCCP tools. To utilize MS and RCCP tools in Ensto’s production environment, further testing in real production environment is required. Moreover, data accuracy, appropriate commitment to adapting and learning the new tools, and continuous developing of functions closely related to MS, such as sales forecasting, need to be ensured.
Resumo:
Abstract
The accuracy of manually recorded time study data for harvester operation shown via simulator screen
Resumo:
Nowadays the used fuel variety in power boilers is widening and new boiler constructions and running models have to be developed. This research and development is done in small pilot plants where more faster analyse about the boiler mass and heat balance is needed to be able to find and do the right decisions already during the test run. The barrier on determining boiler balance during test runs is the long process of chemical analyses of collected input and outputmatter samples. The present work is concentrating on finding a way to determinethe boiler balance without chemical analyses and optimise the test rig to get the best possible accuracy for heat and mass balance of the boiler. The purpose of this work was to create an automatic boiler balance calculation method for 4 MW CFB/BFB pilot boiler of Kvaerner Pulping Oy located in Messukylä in Tampere. The calculation was created in the data management computer of pilot plants automation system. The calculation is made in Microsoft Excel environment, which gives a good base and functions for handling large databases and calculations without any delicate programming. The automation system in pilot plant was reconstructed und updated by Metso Automation Oy during year 2001 and the new system MetsoDNA has good data management properties, which is necessary for big calculations as boiler balance calculation. Two possible methods for calculating boiler balance during test run were found. Either the fuel flow is determined, which is usedto calculate the boiler's mass balance, or the unburned carbon loss is estimated and the mass balance of the boiler is calculated on the basis of boiler's heat balance. Both of the methods have their own weaknesses, so they were constructed parallel in the calculation and the decision of the used method was left to user. User also needs to define the used fuels and some solid mass flowsthat aren't measured automatically by the automation system. With sensitivity analysis was found that the most essential values for accurate boiler balance determination are flue gas oxygen content, the boiler's measured heat output and lower heating value of the fuel. The theoretical part of this work concentrates in the error management of these measurements and analyses and on measurement accuracy and boiler balance calculation in theory. The empirical part of this work concentrates on the creation of the balance calculation for the boiler in issue and on describing the work environment.
Resumo:
Tutkielman tavoitteena oli tarkastella innovaatioiden leviämismallien ennustetarkkuuteen vaikuttavia tekijöitä. Tutkielmassa ennustettiin logistisella mallilla matkapuhelinliittymien leviämistä kolmessa Euroopan maassa: Suomessa, Ranskassa ja Kreikassa. Teoriaosa keskittyi innovaatioiden leviämisen ennustamiseen leviämismallien avulla. Erityisesti painotettiin mallien ennustuskykyä ja niiden käytettävyyttä eri tilanteissa. Empiirisessä osassa keskityttiin ennustamiseen logistisella leviämismallilla, joka kalibroitiin eri tavoin koostetuilla aikasarjoilla. Näin tehtyjä ennusteita tarkasteltiin tiedon kokoamistasojen vaikutusten selvittämiseksi. Tutkimusasetelma oli empiirinen, mikä sisälsi logistisen leviämismallin ennustetarkkuuden tutkimista otosdatan kokoamistasoa muunnellen. Leviämismalliin syötettävä data voidaan kerätä kuukausittain ja operaattorikohtaisesti vaikuttamatta ennustetarkkuuteen. Dataan on sisällytettävä leviämiskäyrän käännöskohta, eli pitkän aikavälin huippukysyntäpiste.
Resumo:
In this diploma work advantages of coherent anti-Stokes Raman scattering spectrometry (CARS) and various methods of the quantitative analysis of substance structure with its help are considered. The basic methods and concepts of the adaptive analysis are adduced. On the basis of these methods the algorithm of automatic measurement of a scattering strip size of a target component in CARS spectrum is developed. The algorithm uses known full spectrum of target substance and compares it with a CARS spectrum. The form of a differential spectrum is used as a feedback to control the accuracy of matching. To exclude the influence of a background in CARS spectra the differential spectrum is analysed by means of its second derivative. The algorithm is checked up on the simulated simple spectra and on the spectra of organic compounds received experimentally.
Resumo:
The main objective of this master’s thesis was to quantitatively study the reliability of market and sales forecasts of a certain company by measuring bias, precision and accuracy of these forecasts by comparing forecasts against actual values. Secondly, the differences of bias, precision and accuracy between markets were explained by various macroeconomic variables and market characteristics. Accuracy and precision of the forecasts seems to vary significantly depending on the market that is being forecasted, the variable that is being forecasted, the estimation period, the length of the estimated period, the forecast horizon and the granularity of the data. High inflation, low income level and high year-on-year market volatility seems to be related with higher annual market forecast uncertainty and high year-on-year sales volatility with higher sales forecast uncertainty. When quarterly market size is forecasted, correlation between macroeconomic variables and forecast errors reduces. Uncertainty of the sales forecasts cannot be explained with macroeconomic variables. Longer forecasts are more uncertain, shorter estimated period leads to higher uncertainty, and usually more recent market forecasts are less uncertain. Sales forecasts seem to be more uncertain than market forecasts, because they incorporate both market size and market share risks. When lead time is more than one year, forecast risk seems to grow as a function of root forecast horizon. When lead time is less than year, sequential error terms are typically correlated, and therefore forecast errors are trending or mean-reverting. The bias of forecasts seems to change in cycles, and therefore the future forecasts cannot be systematically adjusted with it. The MASE cannot be used to measure whether the forecast can anticipate year-on-year volatility. Instead, we constructed a new relative accuracy measure to cope with this particular situation.
Resumo:
Recent years have produced great advances in the instrumentation technology. The amount of available data has been increasing due to the simplicity, speed and accuracy of current spectroscopic instruments. Most of these data are, however, meaningless without a proper analysis. This has been one of the reasons for the overgrowing success of multivariate handling of such data. Industrial data is commonly not designed data; in other words, there is no exact experimental design, but rather the data have been collected as a routine procedure during an industrial process. This makes certain demands on the multivariate modeling, as the selection of samples and variables can have an enormous effect. Common approaches in the modeling of industrial data are PCA (principal component analysis) and PLS (projection to latent structures or partial least squares) but there are also other methods that should be considered. The more advanced methods include multi block modeling and nonlinear modeling. In this thesis it is shown that the results of data analysis vary according to the modeling approach used, thus making the selection of the modeling approach dependent on the purpose of the model. If the model is intended to provide accurate predictions, the approach should be different than in the case where the purpose of modeling is mostly to obtain information about the variables and the process. For industrial applicability it is essential that the methods are robust and sufficiently simple to apply. In this way the methods and the results can be compared and an approach selected that is suitable for the intended purpose. Differences in data analysis methods are compared with data from different fields of industry in this thesis. In the first two papers, the multi block method is considered for data originating from the oil and fertilizer industries. The results are compared to those from PLS and priority PLS. The third paper considers applicability of multivariate models to process control for a reactive crystallization process. In the fourth paper, nonlinear modeling is examined with a data set from the oil industry. The response has a nonlinear relation to the descriptor matrix, and the results are compared between linear modeling, polynomial PLS and nonlinear modeling using nonlinear score vectors.
Resumo:
Transportation of fluids is one of the most common and energy intensive processes in the industrial and HVAC sectors. Pumping systems are frequently subject to engineering malpractice when dimensioned, which can lead to poor operational efficiency. Moreover, pump monitoring requires dedicated measuring equipment, which imply costly investments. Inefficient pump operation and improper maintenance can increase energy costs substantially and even lead to pump failure. A centrifugal pump is commonly driven by an induction motor. Driving the induction motor with a frequency converter can diminish energy consumption in pump drives and provide better control of a process. In addition, induction machine signals can also be estimated by modern frequency converters, dispensing with the use of sensors. If the estimates are accurate enough, a pump can be modelled and integrated into the frequency converter control scheme. This can open the possibility of joint motor and pump monitoring and diagnostics, thereby allowing the detection of reliability-reducing operating states that can lead to additional maintenance costs. The goal of this work is to study the accuracy of rotational speed, torque and shaft power estimates calculated by a frequency converter. Laboratory tests were performed in order to observe estimate behaviour in both steady-state and transient operation. An induction machine driven by a vector-controlled frequency converter, coupled with another induction machine acting as load was used in the tests. The estimated quantities were obtained through the frequency converter’s Trend Recorder software. A high-precision, HBM T12 torque-speed transducer was used to measure the actual values of the aforementioned variables. The effect of the flux optimization energy saving feature on the estimate quality was also studied. A processing function was developed in MATLAB for comparison of the obtained data. The obtained results confirm the suitability of this particular converter to provide accurate enough estimates for pumping applications.
Resumo:
Longitudinal surveys are increasingly used to collect event history data on person-specific processes such as transitions between labour market states. Surveybased event history data pose a number of challenges for statistical analysis. These challenges include survey errors due to sampling, non-response, attrition and measurement. This study deals with non-response, attrition and measurement errors in event history data and the bias caused by them in event history analysis. The study also discusses some choices faced by a researcher using longitudinal survey data for event history analysis and demonstrates their effects. These choices include, whether a design-based or a model-based approach is taken, which subset of data to use and, if a design-based approach is taken, which weights to use. The study takes advantage of the possibility to use combined longitudinal survey register data. The Finnish subset of European Community Household Panel (FI ECHP) survey for waves 1–5 were linked at person-level with longitudinal register data. Unemployment spells were used as study variables of interest. Lastly, a simulation study was conducted in order to assess the statistical properties of the Inverse Probability of Censoring Weighting (IPCW) method in a survey data context. The study shows how combined longitudinal survey register data can be used to analyse and compare the non-response and attrition processes, test the missingness mechanism type and estimate the size of bias due to non-response and attrition. In our empirical analysis, initial non-response turned out to be a more important source of bias than attrition. Reported unemployment spells were subject to seam effects, omissions, and, to a lesser extent, overreporting. The use of proxy interviews tended to cause spell omissions. An often-ignored phenomenon classification error in reported spell outcomes, was also found in the data. Neither the Missing At Random (MAR) assumption about non-response and attrition mechanisms, nor the classical assumptions about measurement errors, turned out to be valid. Both measurement errors in spell durations and spell outcomes were found to cause bias in estimates from event history models. Low measurement accuracy affected the estimates of baseline hazard most. The design-based estimates based on data from respondents to all waves of interest and weighted by the last wave weights displayed the largest bias. Using all the available data, including the spells by attriters until the time of attrition, helped to reduce attrition bias. Lastly, the simulation study showed that the IPCW correction to design weights reduces bias due to dependent censoring in design-based Kaplan-Meier and Cox proportional hazard model estimators. The study discusses implications of the results for survey organisations collecting event history data, researchers using surveys for event history analysis, and researchers who develop methods to correct for non-sampling biases in event history data.
Resumo:
Most of the applications of airborne laser scanner data to forestry require that the point cloud be normalized, i.e., each point represents height from the ground instead of elevation. To normalize the point cloud, a digital terrain model (DTM), which is derived from the ground returns in the point cloud, is employed. Unfortunately, extracting accurate DTMs from airborne laser scanner data is a challenging task, especially in tropical forests where the canopy is normally very thick (partially closed), leading to a situation in which only a limited number of laser pulses reach the ground. Therefore, robust algorithms for extracting accurate DTMs in low-ground-point-densitysituations are needed in order to realize the full potential of airborne laser scanner data to forestry. The objective of this thesis is to develop algorithms for processing airborne laser scanner data in order to: (1) extract DTMs in demanding forest conditions (complex terrain and low number of ground points) for applications in forestry; (2) estimate canopy base height (CBH) for forest fire behavior modeling; and (3) assess the robustness of LiDAR-based high-resolution biomass estimation models against different field plot designs. Here, the aim is to find out if field plot data gathered by professional foresters can be combined with field plot data gathered by professionally trained community foresters and used in LiDAR-based high-resolution biomass estimation modeling without affecting prediction performance. The question of interest in this case is whether or not the local forest communities can achieve the level technical proficiency required for accurate forest monitoring. The algorithms for extracting DTMs from LiDAR point clouds presented in this thesis address the challenges of extracting DTMs in low-ground-point situations and in complex terrain while the algorithm for CBH estimation addresses the challenge of variations in the distribution of points in the LiDAR point cloud caused by things like variations in tree species and season of data acquisition. These algorithms are adaptive (with respect to point cloud characteristics) and exhibit a high degree of tolerance to variations in the density and distribution of points in the LiDAR point cloud. Results of comparison with existing DTM extraction algorithms showed that DTM extraction algorithms proposed in this thesis performed better with respect to accuracy of estimating tree heights from airborne laser scanner data. On the other hand, the proposed DTM extraction algorithms, being mostly based on trend surface interpolation, can not retain small artifacts in the terrain (e.g., bumps, small hills and depressions). Therefore, the DTMs generated by these algorithms are only suitable for forestry applications where the primary objective is to estimate tree heights from normalized airborne laser scanner data. On the other hand, the algorithm for estimating CBH proposed in this thesis is based on the idea of moving voxel in which gaps (openings in the canopy) which act as fuel breaks are located and their height is estimated. Test results showed a slight improvement in CBH estimation accuracy over existing CBH estimation methods which are based on height percentiles in the airborne laser scanner data. However, being based on the idea of moving voxel, this algorithm has one main advantage over existing CBH estimation methods in the context of forest fire modeling: it has great potential in providing information about vertical fuel continuity. This information can be used to create vertical fuel continuity maps which can provide more realistic information on the risk of crown fires compared to CBH.
Resumo:
Tässä työssä perehdytään soodakattiloiden vesikiertomallin rakentamiseen. Työn päätavoitteena on kehittää simulointimallia varten taulukkolaskentapohja, jonka avulla soodakattilan lämpövuotietoja on yksinkertaista ja nopeaa käsitellä ja siirtää Apros 6 -simulointiohjelmaan. Lisäksi tarkoituksena on pyrkiä automatisoimaan työvaiheet mahdollisimman pitkälle, jolloin vesikiertolaskennan tekeminen yksinkertaistuisi, yhtenäistyisi ja tarkentuisi. Tämä on mahdollista Excel- makrojen ja Apros 6:n uusien toimintojen avulla. Apros 6:ssa on nyt mahdollista hyödyntää SCL- komentotiedostoja, joiden avulla sujuva tiedonsiirto Aproksen ja Excelin välillä vodaan toteuttaa. Vesikiertolaskentaan käytettävän datan käsittely on aikaisemmin ollut työlästä ja sen tarkkuus on pitkälti riippunut mallintajasta. Tässä diplomityössä päästään hyödyntämään uusimpia ja realistisempia soodakattiloiden CFD- malleja, joiden avulla pystytään luomaan aikaisempaa tarkemmat lämpövuojakaumat soodakattilan lämpöpinnoille. Tämä muutos parantaa vesikiertolaskennan tarkkuutta. Työn kokeellisessa osassa uutta Excel laskentatyökalua ja uusia lämpövuoarvoja testataan käytännössä. Eräs vanha Apros- vesikiertomalli päivitetään uusilla lämpövuoarvoilla ja sen rakenteeseen tehdään muutoksia tarkkuuden parantamiseksi. Uuden mallin toimivuutta testataan myös 115 %:n kapasiteetilla ja tutkitaan kuinka kyseinen vesikiertopiiri reagoi suurempaan lämpötehoon. Näitä kolmea eri tilannetta vertaillaan toisiinsa ja tarkastellaan eroavaisuuksia niiden vesi-höyrypiireissä.