9 resultados para William, of Ockham, ca. 1285-ca. 1349.

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbonic anhydrases are enzymes that are ubiquitously found in all organisms that are engaged in catalyzing the hydration of carbon dioxide to form bicarbonate and proton and vice versa. They are crucial in the process of respiration, bone resorption, pH regulation, ion transport, and photosynthesis in plants. Out of the five classes of carbonic anhydrase α, β, γ, δ, ζ this study focused in the α carbonic anhydrases. This class of CAs constitute of 16 subfamilies in mammals that include 3 non-active enzymes known as Carbonic Anhydrase Related Proteins. The inactiveness of these enzymes is due to the loss of one or more Histidine residues in the active site. This thesis was conducted based on the aim of studying evolutionary analysis of carbonic anhydrase sequences from organisms spanning from the Cambrian age. It was carried out in two phases. The first phase was the sequence collection, which involved many biological sequence databases as a source. The scope of this segment included sequence alignments and analysis of the sequence manually and in an automated form incorporating few analysis tools. The second Phase was phylogenetic analysis and exploring the subcellular location of the proteins, which was key for the evolutionary analysis. Through the medium of the methods conducted with respect to the phases mentioned above, it was possible to accomplish the desired result. Certain thought-provoking sequences were come across and analyzed thoroughly. Whereas, Phylogenetics showed interesting results to bolster previous findings and new findings as well which lay bedrock for future intensified studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The consumption of manganese is increasing, but huge amounts of manganese still end up in waste in hydrometallurgical processes. The recovery of manganese from multi-metal solutions at low concentrations may not be economical. In addition, poor iron control typically prevents the production of high purity manganese. Separation of iron from manganese can be done with chemical precipitation or solvent extraction methods. Combined carbonate precipitation with air oxidation is a feasible method to separate iron and manganese due to the fast kinetics, good controllability and economical reagents. In addition the leaching of manganese carbonate is easier and less acid consuming than that of hydroxide or sulfide precipitates. Selective iron removal with great efficiency from MnSO4 solution is achieved by combined oxygen or air oxidation and CaCO3 precipitation at pH > 5.8 and at a redox potential of > 200 mV. In order to avoid gypsum formation, soda ash should be used instead of limestone. In such case, however, extra attention needs to be paid on the reagents mole ratios in order to avoid manganese coprecipitation. After iron removal, pure MnSO4 solution was obtained by solvent extraction using organophosphorus reagents, di-(2-ethylhexyl)phosphoric acid (D2EHPA) and bis(2,4,4- trimethylpentyl)phosphinic acid (CYANEX 272). The Mn/Ca and Mn/Mg selectivities can be increased by decreasing the temperature from the commonly used temperatures (40 –60oC) to 5oC. The extraction order of D2EHPA (Ca before Mn) at low temperature remains unchanged but the lowering of temperature causes an increase in viscosity and slower phase separation. Of these regents, CYANEX 272 is selective for Mn over Ca and, therefore, it would be the better choice if there is Ca present in solution. A three-stage Mn extraction followed by a two-stage scrubbing and two-stage sulfuric acid stripping is an effective method of producing a very pure MnSO4 intermediate solution for further processing. From the intermediate MnSO4 some special Mn- products for ion exchange applications were synthesized and studied. Three types of octahedrally coordinated manganese oxide materials as an alternative final product for manganese were chosen for synthesis: layer structured Nabirnessite, tunnel structured Mg-todorokite and K-kryptomelane. As an alternative source of pure MnSO4 intermediate, kryptomelane was synthesized by using a synthetic hydrometallurgical tailings. The results show that the studied OMS materials adsorb selectively Cu, Ni, Cd and K in the presence of Ca and Mg. It was also found that the exchange rates were reasonably high due to the small particle dimensions. Materials are stable in the studied conditions and their maximum Cu uptake capacity was 1.3 mmol/g. Competitive uptake of metals and acid was studied using equilibrium, batch kinetic and fixed-bed measurements. The experimental data was correlated with a dynamic model, which also accounts for the dissolution of the framework manganese. Manganese oxide micro-crystals were also bound onto silica to prepare a composite material having a particle size large enough to be used in column separation experiments. The MnOx/SiO2 ratio was found to affect significantly the properties of the composite. The higher the ratio, the lower is the specific surface area, the pore volume and the pore size. On the other hand, higher amount of silica binder gives composites better mechanical properties. Birnesite and todorokite can be aggregated successfully with colloidal silica at pH 4 and with MnO2/SiO2 weight ratio of 0.7. The best gelation and drying temperature was 110oC and sufficiently strong composites were obtained by additional heat-treatment at 250oC for 2 h. The results show that silicasupported MnO2 materials can be utilized to separate copper from nickel and cadmium. The behavior of the composites can be explained reasonably well with the presented model and the parameters estimated from the data of the unsupported oxides. The metal uptake capacities of the prepared materials were quite small. For example, the final copper loading was 0.14 mmol/gMnO2. According to the results the special MnO2 materials are potential for a specific environmental application to uptake harmful metal ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tillgången på traditionella biobränslen är begränsad och därför behöver man ta fram nya, tidigare outnyttjade biobränslen för att möta de uppställda CO2 emissionsmålen av EU och det ständigt ökande energibehovet. Under de senare åren har intresset riktats mot termisk energiutvinning ur olika restfraktioner och avfall. Vid produktion av fordonsbränsle ur biomassa är den fasta restprodukten ofta den största procesströmmen i produktionsanläggningen. En riktig hantering av restprodukterna skulle göra produktionen mera lönsam och mer ekologiskt hållbar. Ett alternativ är att genom förbränning producera elektricitet och/eller värme eftersom dessa restprodukter anses som CO2-neutrala. Målsättningen med den här avhandlingen var att studera förbränningsegenskaperna hos några fasta restprodukter som uppstår vid framställning av förnybara fordonsbränslen. De fyra undersökta materialen är rapskaka, palmkärnskaka, torkad drank och stabiliserat rötslam. I studien används ett stort urval av undersökningsmetoder, från laboratorieskala till fullskalig förbränning, för att identifiera de huvudsakliga utmaningarna förknippade med förbränning av restprodukterna i pannor med fluidiserad bäddteknik. Med hjälp av detaljerad bränslekarakterisering kunde restprodukterna konstateras vara en värdefull källa för värme- och elproduktion. Den kemiska sammansättningen av restprodukterna varierar stort jämfört med mera traditionellt använda biobränslen. En gemensam faktor för alla de studerade restprodukterna är en hög fosforhalt. På grund av de låga fosforkoncentrationerna i de traditionella biobränslena har grundämnet hittills inte ansetts spela någon större roll i askkemin. Experimenten visade nu att fosfor inte mera kan försummas då man studerar kemin i förbränningsprocesser, då allt flera fosforrika bränslen tränger in på energimarknaden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urateoriat ovat murroksessa, kun urat ovat muuttumassa perinteisistä urapoluista rajattomiin, monisuuntaisiin uriin. Samaan aikaan erilaisten trainee-ohjelmien määrä lisääntyy vauhdilla. Urapolkujen tutkiminen on tästä syystä erittäin ajankohtaista. Tämän tutkielman tarkoituksena on tutkia, miten S-ryhmässä työskentelevien kaupallisen kenttäkoulutuksen käyneiden ja sen käymättömien urapolut eroavat toisistaan. Viimeaikaisten teorioiden mukaan urat voidaan jakaa objektiivisiin ja subjektiivisiin uriin sekä perinteisiin ja rajattomiin uriin. Aikaisempien tutkimustulosten pohjalta tarkastellaan yksilöiden uravalintoja ja käsityksiä hyvästä urasta. Myös yksilön sosiaalistuminen organisaatioon vaikuttaa sitoutumiseen ja tätä kautta uraan. Tutkimuksessa on käytetty kvalitatiivisia menetelmiä ja havaintoaineisto on kerätty sähköpostikyselyiden avulla S-ryhmässä työskenteleviltä henkilöiltä. Tutkimustulokset osoittavat, että urapolut ovat erilaisia. Kaikki tutkimukseen osallistuneet kenttäkoulutetut ovat johtaja-asemassa, vertailuryhmän henkilöt asiantuntija- tai päällikköasemassa. Tulosten mukaan ei kuitenkaan voida todeta, että näiden kahden ryhmän urakäsitykset olisivat huomattavasti erilaisia. Onnistunut ura nähdään useimmin subjektiivisesti haastavana, omien tavoitteiden ja kehittymisen saavuttamisena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conservation laws in physics are numerical invariants of the dynamics of a system. In cellular automata (CA), a similar concept has already been defined and studied. To each local pattern of cell states a real value is associated, interpreted as the “energy” (or “mass”, or . . . ) of that pattern.The overall “energy” of a configuration is simply the sum of the energy of the local patterns appearing on different positions in the configuration. We have a conservation law for that energy, if the total energy of each configuration remains constant during the evolution of the CA. For a given conservation law, it is desirable to find microscopic explanations for the dynamics of the conserved energy in terms of flows of energy from one region toward another. Often, it happens that the energy values are from non-negative integers, and are interpreted as the number of “particles” distributed on a configuration. In such cases, it is conjectured that one can always provide a microscopic explanation for the conservation laws by prescribing rules for the local movement of the particles. The onedimensional case has already been solved by Fuk´s and Pivato. We extend this to two-dimensional cellular automata with radius-0,5 neighborhood on the square lattice. We then consider conservation laws in which the energy values are chosen from a commutative group or semigroup. In this case, the class of all conservation laws for a CA form a partially ordered hierarchy. We study the structure of this hierarchy and prove some basic facts about it. Although the local properties of this hierarchy (at least in the group-valued case) are tractable, its global properties turn out to be algorithmically inaccessible. In particular, we prove that it is undecidable whether this hierarchy is trivial (i.e., if the CA has any non-trivial conservation law at all) or unbounded. We point out some interconnections between the structure of this hierarchy and the dynamical properties of the CA. We show that positively expansive CA do not have non-trivial conservation laws. We also investigate a curious relationship between conservation laws and invariant Gibbs measures in reversible and surjective CA. Gibbs measures are known to coincide with the equilibrium states of a lattice system defined in terms of a Hamiltonian. For reversible cellular automata, each conserved quantity may play the role of a Hamiltonian, and provides a Gibbs measure (or a set of Gibbs measures, in case of phase multiplicity) that is invariant. Conversely, every invariant Gibbs measure provides a conservation law for the CA. For surjective CA, the former statement also follows (in a slightly different form) from the variational characterization of the Gibbs measures. For one-dimensional surjective CA, we show that each invariant Gibbs measure provides a conservation law. We also prove that surjective CA almost surely preserve the average information content per cell with respect to any probability measure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rosin is a natural product from pine forests and it is used as a raw material in resinate syntheses. Resinates are polyvalent metal salts of rosin acids and especially Ca- and Ca/Mg- resinates find wide application in the printing ink industry. In this thesis, analytical methods were applied to increase general knowledge of resinate chemistry and the reaction kinetics was studied in order to model the non linear solution viscosity increase during resinate syntheses by the fusion method. Solution viscosity in toluene is an important quality factor for resinates to be used in printing inks. The concept of critical resinate concentration, c crit, was introduced to define an abrupt change in viscosity dependence on resinate concentration in the solution. The concept was then used to explain the non-inear solution viscosity increase during resinate syntheses. A semi empirical model with two estimated parameters was derived for the viscosity increase on the basis of apparent reaction kinetics. The model was used to control the viscosity and to predict the total reaction time of the resinate process. The kinetic data from the complex reaction media was obtained by acid value titration and by FTIR spectroscopic analyses using a conventional calibration method to measure the resinate concentration and the concentration of free rosin acids. A multivariate calibration method was successfully applied to make partial least square (PLS) models for monitoring acid value and solution viscosity in both mid-infrared (MIR) and near infrared (NIR) regions during the syntheses. The calibration models can be used for on line resinate process monitoring. In kinetic studies, two main reaction steps were observed during the syntheses. First a fast irreversible resination reaction occurs at 235 °C and then a slow thermal decarboxylation of rosin acids starts to take place at 265 °C. Rosin oil is formed during the decarboxylation reaction step causing significant mass loss as the rosin oil evaporates from the system while the viscosity increases to the target level. The mass balance of the syntheses was determined based on the resinate concentration increase during the decarboxylation reaction step. A mechanistic study of the decarboxylation reaction was based on the observation that resinate molecules are partly solvated by rosin acids during the syntheses. Different decarboxylation mechanisms were proposed for the free and solvating rosin acids. The deduced kinetic model supported the analytical data of the syntheses in a wide resinate concentration region, over a wide range of viscosity values and at different reaction temperatures. In addition, the application of the kinetic model to the modified resinate syntheses gave a good fit. A novel synthesis method with the addition of decarboxylated rosin (i.e. rosin oil) to the reaction mixture was introduced. The conversion of rosin acid to resinate was increased to the level necessary to obtain the target viscosity for the product at 235 °C. Due to a lower reaction temperature than in traditional fusion synthesis at 265 °C, thermal decarboxylation is avoided. As a consequence, the mass yield of the resinate syntheses can be increased from ca. 70% to almost 100% by recycling the added rosin oil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to font problem on the tilte field the titlte of the thesis is corrected here. The title of the thesis is: Magnetic Perovskites Sr2FeMoO6 and La(1-x)Ca<sub>(x)MnO3: Synthesis, Fabrication and Characterization of Nanosized Powders and Thin Films

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study explores swords with ferrous inlays found in Finland and dating from the late Iron Age, ca. 700–1200 AD. These swords reflect profound changes not only in styles and fashion but also in the technology of hilts and blades. This study explores how many of these kinds of swords are known from Finland, how they were made and where, what their status was in Late Iron Age Finland, and where the Finnish finds stand in accordance with other areas of Europe. The various methods included measuring of the finds and statistics. The main method of revealing the inlaid marks was radiography due to its non-destructive nature. In cases where inlays were visible without radiography, their details were inspected via microscopy. To study the materials and manufacture of inlaid swords, a sample of them was metallographically analysed to determine the forging technologies and nature of used materials. Furthermore, the manufacture was also studied with experimental approaches. As a result, a catalogue of 151 swords with ferrous inlays was created. This number is relatively high compared with other European countries, although systematic studies have been conducted in only some countries. The inlaid motifs were classified into five distinct categories to help the classification. To summarize, almost every documented inlaid sword was unique in some respect including measurements, inlaid motifs and materials of blades and inlays. Technological variation was also present, some blades being poorer and some of higher quality in spite of the inlaid motifs. Misspelt inscriptions as well as letter-like marks were common in Finland and also in Scandinavia. Furthermore, the provenance of iron and steel used in some blades hints at Scandinavian ores. The above observations, along with the experimental results indicating the existence of multiple alternative techniques of inlaying, suggest that these swords were manufactured locally in Scandinavia, most likely in imitation of Continental European models. Inlaid swords were valued partly for their assumed functionality in combat, as evidenced by damage on some examined blades, or they were valued for their inlays, which could have had fashionable or symbolical meanings bound to local beliefs.