23 resultados para Wavelet Packet and Support Vector Machine
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
This thesis studies the predictability of market switching and delisting events from OMX First North Nordic multilateral stock exchange by using financial statement information and market information from 2007 to 2012. This study was conducted by using a three stage process. In first stage relevant theoretical framework and initial variable pool were constructed. Then, explanatory analysis of the initial variable pool was done in order to further limit and identify relevant variables. The explanatory analysis was conducted by using self-organizing map methodology. In the third stage, the predictive modeling was carried out with random forests and support vector machine methodologies. It was found that the explanatory analysis was able to identify relevant variables. The results indicate that the market switching and delisting events can be predicted in some extent. The empirical results also support the usability of financial statement and market information in the prediction of market switching and delisting events.
Resumo:
Huolimatta korkeasta automaatioasteesta sorvausteollisuudessa, muutama keskeinen ongelma estää sorvauksen täydellisen automatisoinnin. Yksi näistä ongelmista on työkalun kuluminen. Tämä työ keskittyy toteuttamaan automaattisen järjestelmän kulumisen, erityisesti viistekulumisen, mittaukseen konenäön avulla. Kulumisen mittausjärjestelmä poistaa manuaalisen mittauksen tarpeen ja minimoi ajan, joka käytetään työkalun kulumisen mittaukseen. Mittauksen lisäksi tutkitaan kulumisen mallinnusta sekä ennustamista. Automaattinen mittausjärjestelmä sijoitettiin sorvin sisälle ja järjestelmä integroitiin onnistuneesti ulkopuolisten järjestelmien kanssa. Tehdyt kokeet osoittivat, että mittausjärjestelmä kykenee mittaamaan työkalun kulumisen järjestelmän oikeassa ympäristössä. Mittausjärjestelmä pystyy myös kestämään häiriöitä, jotka ovat konenäköjärjestelmille yleisiä. Työkalun kulumista mallinnusta tutkittiin useilla eri menetelmillä. Näihin kuuluivat muiden muassa neuroverkot ja tukivektoriregressio. Kokeet osoittivat, että tutkitut mallit pystyivät ennustamaan työkalun kulumisasteen käytetyn ajan perusteella. Parhaan tuloksen antoivat neuroverkot Bayesiläisellä regularisoinnilla.
Resumo:
The subject of the thesis is automatic sentence compression with machine learning, so that the compressed sentences remain both grammatical and retain their essential meaning. There are multiple possible uses for the compression of natural language sentences. In this thesis the focus is generation of television program subtitles, which often are compressed version of the original script of the program. The main part of the thesis consists of machine learning experiments for automatic sentence compression using different approaches to the problem. The machine learning methods used for this work are linear-chain conditional random fields and support vector machines. Also we take a look which automatic text analysis methods provide useful features for the task. The data used for machine learning is supplied by Lingsoft Inc. and consists of subtitles in both compressed an uncompressed form. The models are compared to a baseline system and comparisons are made both automatically and also using human evaluation, because of the potentially subjective nature of the output. The best result is achieved using a CRF - sequence classification using a rich feature set. All text analysis methods help classification and most useful method is morphological analysis. Tutkielman aihe on suomenkielisten lauseiden automaattinen tiivistäminen koneellisesti, niin että lyhennetyt lauseet säilyttävät olennaisen informaationsa ja pysyvät kieliopillisina. Luonnollisen kielen lauseiden tiivistämiselle on monta käyttötarkoitusta, mutta tässä tutkielmassa aihetta lähestytään television ohjelmien tekstittämisen kautta, johon käytännössä kuuluu alkuperäisen tekstin lyhentäminen televisioruudulle paremmin sopivaksi. Tutkielmassa kokeillaan erilaisia koneoppimismenetelmiä tekstin automaatiseen lyhentämiseen ja tarkastellaan miten hyvin erilaiset luonnollisen kielen analyysimenetelmät tuottavat informaatiota, joka auttaa näitä menetelmiä lyhentämään lauseita. Lisäksi tarkastellaan minkälainen lähestymistapa tuottaa parhaan lopputuloksen. Käytetyt koneoppimismenetelmät ovat tukivektorikone ja lineaarisen sekvenssin mallinen CRF. Koneoppimisen tukena käytetään tekstityksiä niiden eri käsittelyvaiheissa, jotka on saatu Lingsoft OY:ltä. Luotuja malleja vertaillaan Lopulta mallien lopputuloksia evaluoidaan automaattisesti ja koska teksti lopputuksena on jossain määrin subjektiivinen myös ihmisarviointiin perustuen. Vertailukohtana toimii kirjallisuudesta poimittu menetelmä. Tutkielman tuloksena paras lopputulos saadaan aikaan käyttäen CRF sekvenssi-luokittelijaa laajalla piirrejoukolla. Kaikki kokeillut teksin analyysimenetelmät auttavat luokittelussa, joista tärkeimmän panoksen antaa morfologinen analyysi.
Resumo:
The main objective of this study was todo a statistical analysis of ecological type from optical satellite data, using Tipping's sparse Bayesian algorithm. This thesis uses "the Relevence Vector Machine" algorithm in ecological classification betweenforestland and wetland. Further this bi-classification technique was used to do classification of many other different species of trees and produces hierarchical classification of entire subclasses given as a target class. Also, we carried out an attempt to use airborne image of same forest area. Combining it with image analysis, using different image processing operation, we tried to extract good features and later used them to perform classification of forestland and wetland.
Resumo:
Tässä työssä raportoidaan hybridihitsauksesta otettujen suurnopeuskuvasarjojen automaattisen analyysijärjestelmän kehittäminen.Järjestelmän tarkoitus oli tuottaa tietoa, joka avustaisi analysoijaa arvioimaan kuvatun hitsausprosessin laatua. Tutkimus keskittyi valokaaren taajuuden säännöllisyyden ja lisäainepisaroiden lentosuuntien mittaamiseen. Valokaaria havaittiin kuvasarjoista sumean c-means-klusterointimenetelmän avullaja perättäisten valokaarien välistä aikaväliä käytettiin valokaaren taajuuden säännöllisyyden mittarina. Pisaroita paikannettiin menetelmällä, jossa yhdistyi pääkomponenttianalyysi ja tukivektoriluokitin. Kalman-suodinta käytettiin tuottamaan arvioita pisaroiden lentosuunnista ja nopeuksista. Lentosuunnanmääritysmenetelmä luokitteli pisarat niiden arvioitujen lentosuuntien perusteella. Järjestelmän kehittämiseen käytettävissä olleet kuvasarjat poikkesivat merkittävästi toisistaan kuvanlaadun ja pisaroiden ulkomuodon osalta, johtuen eroista kuvaus- ja hitsausprosesseissa. Analyysijärjestelmä kehitettiin toimimaan pienellä osajoukolla kuvasarjoja, joissa oli tietynlainen kuvaus- ja hitsausprosessi ja joiden kuvanlaatu ja pisaroiden ulkomuoto olivat samankaltaisia, mutta järjestelmää testattiin myös osajoukon ulkopuolisilla kuvasarjoilla. Testitulokset osoittivat, että lentosuunnanmääritystarkkuus oli kohtuullisen suuri osajoukonsisällä ja pieni muissa kuvasarjoissa. Valokaaren taajuuden säännöllisyyden määritys oli tarkka useammassa kuvasarjassa.
Resumo:
This thesis presents the calibration and comparison of two systems, a machine vision system that uses 3 channel RGB images and a line scanning spectral system. Calibration. is the process of checking and adjusting the accuracy of a measuring instrument by comparing it with standards. For the RGB system self-calibrating methods for finding various parameters of the imaging device were developed. Color calibration was done and the colors produced by the system were compared to the known colors values of the target. Software drivers for the Sony Robot were also developed and a mechanical part to connect a camera to the robot was also designed. For the line scanning spectral system, methods for the calibrating the alignment of the system and the measurement of the dimensions of the line scanned by the system were developed. Color calibration of the spectral system is also presented.
Resumo:
Perinteisesti ajoneuvojen markkinointikampanjoissa kohderyhmät muodostetaan yksinkertaisella kriteeristöllä koskien henkilön tai hänen ajoneuvonsa ominaisuuksia. Ennustavan analytiikan avulla voidaan tuottaa kohderyhmänmuodostukseen teknisesti kompleksisia mutta kuitenkin helppokäyttöisiä menetelmiä. Tässä työssä on sovellettu luokittelu- ja regressiomenetelmiä uuden auton ostajien joukkoon. Tämän työn menetelmiksi on rajattu tukivektorikone sekä Coxin regressiomalli. Coxin regression avulla on tutkittu elinaika-analyysien soveltuvuutta ostotapahtuman tapahtumahetken mallintamiseen. Luokittelu tukivektorikonetta käyttäen onnistuu tehtävässään noin 72% tapauksissa. Tukivektoriregressiolla mallinnetun hankintahetken virheen keskiarvo on noin neljä kuukautta. Työn tulosten perusteella myös elinaika-analyysin käyttö ostotapahtuman tapahtumahetken mallintamiseen on menetelmänä käyttökelpoinen.
Resumo:
Tutkielmassa käsitellään matemaattisia ennustamismenetelmiä, jotka soveltuvat tyypin 1 diabeteksen ennustamiseen. Aluksi esitellään menetelmiä, jotka soveltuvat puuttuvia havaintoja sisältävien aineistojen paikkaamiseen. Paikattua aineistoa on mahdollista analysoida useilla tavallisilla tilastollisilla menetelmillä, jotka sopivat täydellisiin aineistoihin. Seuraavaksi pyritään mallintamaan aineistoa semiparametrisilla komponenttimalleilla (eng. mixture model), jolloin mallin muotoa ei ole tiukasti etukäteen rajoitettu. Sen jälkeen sovelletaan kolmea luokittelevaa ennustajaa: logistista regressiomallia, eteenpäinsyöttävää yhden piilotason neuroverkkoa ja SVM-menetelmää (eng. support vector machine). Esiteltäviä menetelmiä on sovellettu todelliseen aineistoon, joka on kerätty Turun yliopistossa käynnissä olevassa tutkimusprojektissa. Projektin tavoitteena on oppia ennustamaan ja ehkäisemään tyypin 1 diabetesta (Type 1 diabetes prediction and prevention project, lyh. DIPP-projekti). Erityisesti projektissa on pyritty löytämään uusia tuntemattomia taudinaiheuttajia. Tässä tutkielmassa paneudutaan sen sijaan kerätyn havaintoaineiston matemaattisiin analysointimenetelmiin. Parhaat ennusteet saatiin perinteisellä logistisella regressiomallilla. Tutkielmassa kuitenkin todetaan, että tulevaisuudessa on mahdollista löytää parempia ennustajia parantamalla muita edellä mainittuja menetelmiä. Erityisesti SVM-menetelmä ansaitsisi lisähuomiota, sillä tässä tutkielmassa sitä sovellettiin vain kaikkein yksinkertaisimmassa muodossa.
Resumo:
Työssä käydään läpi tukivektorikoneiden teoreettista pohjaa sekä tutkitaan eri parametrien vaikutusta spektridatan luokitteluun.
Resumo:
The purpose of this study is based on the need of finding what kind of problems Finnish SMEs face in Russian market and how they could be supported. Used support activities in certain levels of internationalization and internationalization patterns are evaluated, international experience of entrepreneur is compared to used support activities and the most challenging pillars in Russia from the Institutional Theory are defined. The empirical part of the study is a semi structured qualitative analysis of ten case companies that represent different industry fields. All of them are SMEs and they represent different levels of internationalization and internationalization patterns. The results of this study indicated that usefulness of support activities have to be evaluated case by case. All the companies are individual organizations and usefulness of support activities have to be evaluated according to the actual situation of the company. International experience of manager has effect on the use of support activities. SMEs identified many problems related to pillars of Institutional theory and regulative environment seems to be the most challenging one.
Resumo:
The review of intelligent machines shows that the demand for new ways of helping people in perception of the real world is becoming higher and higher every year. This thesis provides information about design and implementation of machine vision for mobile assembly robot. The work has been done as a part of LUT project in Laboratory of Intelligent Machines. The aim of this work is to create a working vision system. The qualitative and quantitative research were done to complete this task. In the first part, the author presents the theoretical background of such things as digital camera work principles, wireless transmission basics, creation of live stream, methods used for pattern recognition. Formulas, dependencies and previous research related to the topic are shown. In the second part, the equipment used for the project is described. There is information about the brands, models, capabilities and also requirements needed for implementation. Although, the author gives a description of LabVIEW software, its add-ons and OpenCV which are used in the project. Furthermore, one can find results in further section of considered thesis. They mainly represented by screenshots from cameras, working station and photos of the system. The key result of this thesis is vision system created for the needs of mobile assembly robot. Therefore, it is possible to see graphically what was done on examples. Future research in this field includes optimization of the pattern recognition algorithm. This will give less response time for recognizing objects. Presented by author system can be used also for further activities which include artificial intelligence usage.
Resumo:
Steganografian tarkoituksena on salaisen viestin piilottaminen muun informaation sekaan. Tutkielmassa perehdytään kirjallisuuden pohjalta steganografiaan ja kuvien digitaaliseen vesileimaamiseen. Tutkielmaan kuuluu myös kokeellinen osuus. Siinä esitellään vesileimattujen kuvien tunnistamiseen kehitetty testausjärjestelmä ja testiajojen tulokset. Testiajoissa kuvasarjoja on vesileimattu valituilla vesileimausmenetelmillä parametreja vaihdellen. Tunnistettaville kuville tehdään piirreirrotus. Erotellut piirteet annetaan parametreina luokittimelle, joka tekee lopullisen tunnistamispäätöksen. Tutkimuksessa saatiin toteutettua toimiva ohjelmisto vesileiman lisäämiseen ja vesileimattujen kuvien tunnistamiseen kuvajoukosta. Tulosten perusteella, sopivalla piirreirrottimella ja tukivektorikoneluokittimella päästään yli 95 prosentin tunnistamistarkkuuteen.
Resumo:
This master’s thesis mainly focuses on the design requirements of an Electric drive for Hybrid car application and its control strategy to achieve a wide speed range. It also emphasises how the control and performance requirements are transformed into its design variables. A parallel hybrid topology is considered where an IC engine and an electric drive share a common crank shaft. A permanent magnet synchronous machine (PMSM) is used as an electric drive machine. Performance requirements are converted into Machine design variables using the vector model of PMSM. Main dimensions of the machine are arrived using analytical approach and Finite Element Analysis (FEA) is used to verify the design and performance. Vector control algorithm was used to control the machine. The control algorithm was tested in a low power PMSM using an embedded controller. A prototype of 10 kW PMSM was built according to the design values. The prototype was tested in the laboratory using a high power converter. Tests were carried out to verify different operating modes. The results were in agreement with the calculations.
Resumo:
This thesis is a literature study that develops a conceptual model of decision making and decision support in service systems. The study is related to the Ä-Logi, Intelligent Service Logic for Welfare Sector Services research project, and the objective of the study is to develop the necessary theoretical framework to enable further research based on the research project results and material. The study first examines the concepts of service and service systems, focusing on understanding the characteristics of service systems and their implications for decision making and decision support to provide the basis for the development of the conceptual model. Based on the identified service system characteristics, an integrated model of service systems is proposed that views service systems through a number of interrelated perspectives that each offer different, but complementary, implications on the nature of decision making and the requirements for decision support in service systems. Based on the model, it is proposed that different types of decision making contexts can be identified in service systems that may be dominated by different types of decision making processes and where different types of decision support may be required, depending on the characteristics of the decision making context and its decision making processes. The proposed conceptual model of decision making and decision support in service systems examines the characteristics of decision making contexts and processes in service systems, and their typical requirements for decision support. First, a characterization of different types of decision making contexts in service systems is proposed based on the Cynefin framework and the identified service system characteristics. Second, the nature of decision making processes in service systems is proposed to be dual, with both rational and naturalistic decision making processes existing in service systems, and having an important and complementary role in decision making in service systems. Finally, a characterization of typical requirements for decision support in service systems is proposed that examines the decision support requirements associated with different types of decision making processes in characteristically different types of decision making contexts. It is proposed that decision support for the decision making processes that are based on rational decision making can be based on organizational decision support models, while decision support for the decision making processes that are based on naturalistic decision making should be based on supporting the decision makers’ situation awareness and facilitating the development of their tacit knowledge of the system and its tasks. Based on the proposed conceptual model a further research process is proposed. The study additionally provides a number of new perspectives on the characteristics of service systems, and the nature of decision making and requirements for decision support in service systems that can potentially provide a basis for further discussion and research, and support the practice alike.