24 resultados para Symmetry Ratio Algorithm
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
JÄKÄLA-algoritmi (Jatkuvan Äänitehojakautuman algoritmi Käytävien Äänikenttien LAskentaan) ja sen NUMO- ja APPRO-laskentayhtälöt perustuvat käytävällä olevan todellisen äänilähteen kuvalähteiden symmetriaan. NUMO on algoritmin numeerisen ratkaisun ja APPRO likiarvoratkaisun laskentayhtälö. Algoritmia johdettaessa oletettiin, että absorptiomateriaali oli jakautunut tasaisesti käytävän ääntä heijastaville pinnoille. Suorakaiteen muotoisen käytävän kuvalähdetason muunto jatkuvaksi äänitehojakautumaksi sisältää kolme muokkausvaihetta. Aluksi suorakaiteen kuvalähdetaso muunnetaan neliön muotoiseksi. Seuraavaksi neliön muotoisen kuvalähdetason samanarvoiset kuvalähteet siirretään koordinaattiakselille diskreetiksi kuvalähdejonoksi. Lopuksi kuvalähdejono muunnetaan jatkuvaksi äänitehojakautumaksi, jolloin käytävän vastaanottopisteen äänenpainetaso voidaan laskea integroimalla jatkuvan äänitehojakautuman yli. JÄKÄLA-algoritmin validiteetin toteamiseksi käytettiin testattua kaupallista AKURI-ohjelmaa. AKURI-ohjelma antoi myös hyvän käsityksen siitä, miten NUMO- ja APPRO-yhtälöillä lasketut arvot mahdollisesti eroavat todellisilla käytävillä mitatuista arvoista. JÄKÄLA-algoritmin NUMO- ja APPRO-yhtälöitä testattiin myös vertaamalla niiden antamia tuloksia kolmen erityyppisen käytävän äänenpainetasomittauksiin. Tässä tutkimuksessa on osoitettu, että akustisen kuvateorian pohjalta on mahdollista johtaa laskenta-algoritmi, jota voidaan soveltaa pitkien käytävien äänikenttien pika-arvioinnissa paikan päällä. Sekä teoreettinen laskenta että käytännön äänenpainetasomittaukset todellisilla käytävillä osoittivat, että JÄKÄLA-algoritmin yhtälöiden ennustustarkkuus oli erinomainen ideaalikäytävillä ja hyvä niillä todellisilla käytävillä, joilla ei ollut ääntä heijastavia rakenteita. NUMO- ja APPRO-yhtälöt näyttäisivät toimivan hyvin käytävillä, joiden poikkileikkaus oli lähes neliön muotoinen ja joissa pintojen suurin absorptiokerroin oli korkeintaan kymmenen kertaa pienintä absorptiokerrointa suurempi. NUMO- ja APPRO-yhtälöiden suurin puute on, etteivät ne ota huomioon pintojen erilaisia absorptiokertoimia eivätkä esineistä heijastuvia ääniä. NUMO- ja APPRO- laskentayhtälöt poikkesivat mitatuista arvoista eniten käytävillä, joilla kahden vastakkaisen pinnan absorptiokerroin oli hyvin suuri ja toisen pintaparin hyvin pieni, ja käytävillä, joissa oli massiivisia, ääntä heijastavia pilareita ja palkkeja. JÄKÄLA-algoritmin NUMO- ja APPRO-yhtälöt antoivat tutkituilla käytävillä kuitenkin selvästi tarkempia arvoja kuin Kuttruffin likiarvoyhtälö ja tilastollisen huoneakustiikan perusyhtälö. JÄKÄLA-algoritmin laskentatarkkuutta on testattu vain neljällä todellisella käytävällä. Algoritmin kehittämiseksi tulisi jatkossa käytävän vastakkaisia pintoja ja niiden absorptiokertoimia käsitellä laskennassa pareittain. Algoritmin validiteetin varmistamiseksi on mittauksia tehtävä lisää käytävillä, joiden absorptiomateriaalien jakautumat poikkeavat toisistaan.
Resumo:
Abstract
Resumo:
The parameter setting of a differential evolution algorithm must meet several requirements: efficiency, effectiveness, and reliability. Problems vary. The solution of a particular problem can be represented in different ways. An algorithm most efficient in dealing with a particular representation may be less efficient in dealing with other representations. The development of differential evolution-based methods contributes substantially to research on evolutionary computing and global optimization in general. The objective of this study is to investigatethe differential evolution algorithm, the intelligent adjustment of its controlparameters, and its application. In the thesis, the differential evolution algorithm is first examined using different parameter settings and test functions. Fuzzy control is then employed to make control parameters adaptive based on an optimization process and expert knowledge. The developed algorithms are applied to training radial basis function networks for function approximation with possible variables including centers, widths, and weights of basis functions and both having control parameters kept fixed and adjusted by fuzzy controller. After the influence of control variables on the performance of the differential evolution algorithm was explored, an adaptive version of the differential evolution algorithm was developed and the differential evolution-based radial basis function network training approaches were proposed. Experimental results showed that the performance of the differential evolution algorithm is sensitive to parameter setting, and the best setting was found to be problem dependent. The fuzzy adaptive differential evolution algorithm releases the user load of parameter setting and performs better than those using all fixedparameters. Differential evolution-based approaches are effective for training Gaussian radial basis function networks.
Resumo:
Suihku/viira-nopeussuhde on perälaatikon huulisuihkun ja viiran välinen nopeusero. Se vaikuttaa suuresti paperin ja kartongin loppuominaisuuksiin, kuten formaatioon sekä kuituorientaatioon ja näin ollen paperin lujuusominaisuuksiin. Tämän johdosta on erityisen tärkeää tietää todellinen suihku/viira-nopeussuhde paperin- ja kartonginvalmistuksessa. Perinteinen suihku/viira-nopeussuhteen määritysmenetelmä perustuu perälaatikon kokonaispaineeseen. Tällä menetelmällä kuitenkin todellinen huulisuihkun nopeus saattaa usein jäädä tietämättä johtuen mahdollisesta virheellisestä painemittarin kalibroinnista sekä laskuyhtälön epätarkkuuksista. Tämän johdosta on kehitetty useita reaaliaikaisia huulisuihkun mittausmenetelmiä. Perälaatikon parametrien optimaaliset asetukset ovat mahdollista määrittää ja ylläpitää huulisuihkun nopeuden “on-line” määrityksellä. Perälaatikon parametrejä ovat mm. huulisuihku, huuliaukon korkeusprofiili, reunavirtaukset ja syöttövirtauksen tasaisuus. Huulisuihkun nopeuden on-line mittauksella paljastuu myös muita perälaatikon ongelmakohtia, kuten mekaaniset viat, joita on perinteisesti tutkittu aikaa vievillä paperin ja kartongin lopputuoteanalyyseillä.
Resumo:
The study is related to lossless compression of greyscale images. The goal of the study was to combine two techniques of lossless image compression, i.e. Integer Wavelet Transform and Differential Pulse Code Modulation to attain better compression ratio. This is an experimental study, where we implemented Integer Wavelet Transform, Differential Pulse Code Modulation and an optimized predictor model using Genetic Algorithm. This study gives encouraging results for greyscale images. We achieved a better compression ration in term of entropy for experiments involving quadrant of transformed image and using optimized predictor coefficients from Genetic Algorithm. In an other set of experiments involving whole image, results are encouraging and opens up many areas for further research work like implementing Integer Wavelet Transform on multiple levels and finding optimized predictor at local levels.
Resumo:
Coherent anti-Stokes Raman scattering is the powerful method of laser spectroscopy in which significant successes are achieved. However, the non-linear nature of CARS complicates the analysis of the received spectra. The objective of this Thesis is to develop a new phase retrieval algorithm for CARS. It utilizes the maximum entropy method and the new wavelet approach for spectroscopic background correction of a phase function. The method was developed to be easily automated and used on a large number of spectra of different substances.. The algorithm was successfully tested on experimental data.
Resumo:
This thesis presents experimental studies of rare earth (RE) metal induced structures on Si(100) surfaces. Two divalent RE metal adsorbates, Eu and Yb, are investigated on nominally flat Si(100) and on vicinal, stepped Si(100) substrates. Several experimental methods have been applied, including scanning tunneling microscopy/spectroscopy (STM/STS), low energy electron diffraction (LEED), synchrotron radiation photoelectron spectroscopy (SR-PES), Auger electron spectroscopy (AES), thermal desorption spectroscopy (TDS), and work function change measurements (Δφ). Two stages can be distinguished in the initial growth of the RE/Si interface: the formation of a two-dimensional (2D) adsorbed layer at submonolayer coverage and the growth of a three-dimensional (3D) silicide phase at higher coverage. The 2D phase is studied for both adsorbates in order to discover whether they produce common reconstructions or reconstructions common to the other RE metals. For studies of the 3D phase Yb is chosen due to its ability to crystallize in a hexagonal AlB2 type lattice, which is the structure of RE silicide nanowires, therefore allowing for the possibility of the growth of one-dimensional (1D) wires. It is found that despite their similar electronic configuration, Eu and Yb do not form similar 2D reconstructions on Si(100). Instead, a wealth of 2D structures is observed and atomic models are proposed for the 2×3-type reconstructions. In addition, adsorbate induced modifications on surface morphology and orientational symmetry are observed. The formation of the Yb silicide phase follows the Stranski-Krastanov growth mode. Nanowires with the hexagonal lattice are observed on the flat Si(100) substrate, and moreover, an unexpectedly large variety of growth directions are revealed. On the vicinal substrate the growth of the silicide phase as 3D islands and wires depends drastically on the growth conditions. The conditions under which wires with high aspect ratio and single orientation parallel to the step edges can be formed are demonstrated.
Resumo:
This thesis deals with distance transforms which are a fundamental issue in image processing and computer vision. In this thesis, two new distance transforms for gray level images are presented. As a new application for distance transforms, they are applied to gray level image compression. The new distance transforms are both new extensions of the well known distance transform algorithm developed by Rosenfeld, Pfaltz and Lay. With some modification their algorithm which calculates a distance transform on binary images with a chosen kernel has been made to calculate a chessboard like distance transform with integer numbers (DTOCS) and a real value distance transform (EDTOCS) on gray level images. Both distance transforms, the DTOCS and EDTOCS, require only two passes over the graylevel image and are extremely simple to implement. Only two image buffers are needed: The original gray level image and the binary image which defines the region(s) of calculation. No other image buffers are needed even if more than one iteration round is performed. For large neighborhoods and complicated images the two pass distance algorithm has to be applied to the image more than once, typically 3 10 times. Different types of kernels can be adopted. It is important to notice that no other existing transform calculates the same kind of distance map as the DTOCS. All the other gray weighted distance function, GRAYMAT etc. algorithms find the minimum path joining two points by the smallest sum of gray levels or weighting the distance values directly by the gray levels in some manner. The DTOCS does not weight them that way. The DTOCS gives a weighted version of the chessboard distance map. The weights are not constant, but gray value differences of the original image. The difference between the DTOCS map and other distance transforms for gray level images is shown. The difference between the DTOCS and EDTOCS is that the EDTOCS calculates these gray level differences in a different way. It propagates local Euclidean distances inside a kernel. Analytical derivations of some results concerning the DTOCS and the EDTOCS are presented. Commonly distance transforms are used for feature extraction in pattern recognition and learning. Their use in image compression is very rare. This thesis introduces a new application area for distance transforms. Three new image compression algorithms based on the DTOCS and one based on the EDTOCS are presented. Control points, i.e. points that are considered fundamental for the reconstruction of the image, are selected from the gray level image using the DTOCS and the EDTOCS. The first group of methods select the maximas of the distance image to new control points and the second group of methods compare the DTOCS distance to binary image chessboard distance. The effect of applying threshold masks of different sizes along the threshold boundaries is studied. The time complexity of the compression algorithms is analyzed both analytically and experimentally. It is shown that the time complexity of the algorithms is independent of the number of control points, i.e. the compression ratio. Also a new morphological image decompression scheme is presented, the 8 kernels' method. Several decompressed images are presented. The best results are obtained using the Delaunay triangulation. The obtained image quality equals that of the DCT images with a 4 x 4
Resumo:
Invocatio: Dirigente Jesu.
Resumo:
In the Russian Wholesale Market, electricity and capacity are traded separately. Capacity is a special good, the sale of which obliges suppliers to keep their generating equipment ready to produce the quantity of electricity indicated by the System Operator. The purpose of the formation of capacity trading was the maintenance of reliable and uninterrupted delivery of electricity in the wholesale market. The price of capacity reflects constant investments in construction, modernization and maintenance of power plants. So, the capacity sale creates favorable conditions to attract investments in the energy sector because it guarantees the investor that his investments will be returned.
Resumo:
Soitinnus: piano.
Resumo:
In this work a fuzzy linear system is used to solve Leontief input-output model with fuzzy entries. For solving this model, we assume that the consumption matrix from di erent sectors of the economy and demand are known. These assumptions heavily depend on the information obtained from the industries. Hence uncertainties are involved in this information. The aim of this work is to model these uncertainties and to address them by fuzzy entries such as fuzzy numbers and LR-type fuzzy numbers (triangular and trapezoidal). Fuzzy linear system has been developed using fuzzy data and it is solved using Gauss-Seidel algorithm. Numerical examples show the e ciency of this algorithm. The famous example from Prof. Leontief, where he solved the production levels for U.S. economy in 1958, is also further analyzed.
Resumo:
I doktorsavhandlingen undersöks förmågan att lösa hos ett antal lösare för optimeringsproblem och ett antal svårigheter med att göra en rättvis lösarjämförelse avslöjas. Dessutom framläggs några förbättringar som utförts på en av lösarna som heter GAMS/AlphaECP. Optimering innebär, i det här sammanhanget, att finna den bästa möjliga lösningen på ett problem. Den undersökta klassen av problem kan karaktäriseras som svårlöst och förekommer inom ett flertal industriområden. Målet har varit att undersöka om det finns en lösare som är universellt snabbare och hittar lösningar med högre kvalitet än någon av de andra lösarna. Det kommersiella optimeringssystemet GAMS (General Algebraic Modeling System) och omfattande problembibliotek har använts för att jämföra lösare. Förbättringarna som presenterats har utförts på GAMS/AlphaECP lösaren som baserar sig på skärplansmetoden Extended Cutting Plane (ECP). ECP-metoden har utvecklats främst av professor Tapio Westerlund på Anläggnings- och systemteknik vid Åbo Akademi.
Resumo:
This study investigates futures market efficiency and optimal hedge ratio estimation. First, cointegration between spot and futures prices is studied using Johansen method, with two different model specifications. If prices are found cointegrated, restrictions on cointegrating vector and adjustment coefficients are imposed, to account for unbiasedness, weak exogeneity and prediction hypothesis. Second, optimal hedge ratios are estimated using static OLS, and time-varying DVEC and CCC models. In-sample and out-of-sample results for one, two and five period ahead are reported. The futures used in thesis are RTS index, EUR/RUB exchange rate and Brent oil, traded in Futures and options on RTS.(FORTS) For in-sample period, data points were acquired from start of trading of each futures contract, RTS index from August 2005, EUR/RUB exchange rate March 2009 and Brent oil October 2008, lasting till end of May 2011. Out-of-sample period covers start of June 2011, till end of December 2011. Our results indicate that all three asset pairs, spot and futures, are cointegrated. We found RTS index futures to be unbiased predictor of spot price, mixed evidence for exchange rate, and for Brent oil futures unbiasedness was not supported. Weak exogeneity results for all pairs indicated spot price to lead in price discovery process. Prediction hypothesis, unbiasedness and weak exogeneity of futures, was rejected for all asset pairs. Variance reduction results varied between assets, in-sample in range of 40-85 percent and out-of sample in range of 40-96 percent. Differences between models were found small, except for Brent oil in which OLS clearly dominated. Out-of-sample results indicated exceptionally high variance reduction for RTS index, approximately 95 percent.