22 resultados para Segmental Stability

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Repair of segmental defects in load-bearing long bones is a challenging task because of the diversity of the load affecting the area; axial, bending, shearing and torsional forces all come together to test the stability/integrity of the bone. The natural biomechanical requirements for bone restorative materials include strength to withstand heavy loads, and adaptivity to conform into a biological environment without disturbing or damaging it. Fiber-reinforced composite (FRC) materials have shown promise, as metals and ceramics have been too rigid, and polymers alone are lacking in strength which is needed for restoration. The versatility of the fiber-reinforced composites also allows tailoring of the composite to meet the multitude of bone properties in the skeleton. The attachment and incorporation of a bone substitute to bone has been advanced by different surface modification methods. Most often this is achieved by the creation of surface texture, which allows bone growth, onto the substitute, creating a mechanical interlocking. Another method is to alter the chemical properties of the surface to create bonding with the bone – for example with a hydroxyapatite (HA) or a bioactive glass (BG) coating. A novel fiber-reinforced composite implant material with a porous surface was developed for bone substitution purposes in load-bearing applications. The material’s biomechanical properties were tailored with unidirectional fiber reinforcement to match the strength of cortical bone. To advance bone growth onto the material, an optimal surface porosity was created by a dissolution process, and an addition of bioactive glass to the material was explored. The effects of dissolution and orientation of the fiber reinforcement were also evaluated for bone-bonding purposes. The Biological response to the implant material was evaluated in a cell culture study to assure the safety of the materials combined. To test the material’s properties in a clinical setting, an animal model was used. A critical-size bone defect in a rabbit’s tibia was used to test the material in a load-bearing application, with short- and long-term follow-up, and a histological evaluation of the incorporation to the host bone. The biomechanical results of the study showed that the material is durable and the tailoring of the properties can be reproduced reliably. The Biological response - ex vivo - to the created surface structure favours the attachment and growth of bone cells, with the additional benefit of bioactive glass appearing on the surface. No toxic reactions to possible agents leaching from the material could be detected in the cell culture study when compared to a nontoxic control material. The mechanical interlocking was enhanced - as expected - with the porosity, whereas the reinforcing fibers protruding from the surface of the implant gave additional strength when tested in a bone-bonding model. Animal experiments verified that the material is capable of withstanding load-bearing conditions in prolonged use without breaking of the material or creating stress shielding effects to the host bone. A Histological examination verified the enhanced incorporation to host bone with an abundance of bone growth onto and over the material. This was achieved with minimal tissue reactions to a foreign body. An FRC implant with surface porosity displays potential in the field of reconstructive surgery, especially regarding large bone defects with high demands on strength and shape retention in load-bearing areas or flat bones such as facial / cranial bones. The benefits of modifying the strength of the material and adjusting the surface properties with fiber reinforcement and bone-bonding additives to meet the requirements of different bone qualities are still to be fully discovered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lihasikojen E-vitamiinin tarve ruokittaessa vastapuidulla ohralla ja rehuun lisätyn E-vitamiinin vaikutus lihan pakastussäilyvyyteen ja syöntilaatuun

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Työssä analysoidaanprosessin vaikutusta paperikoneen stabiiliuteen. Kaksi modernia sanomalehtipaperikonetta analysoitiin ja sen perusteella molemmista prosesseista rakennettiin fysiikan lakeihin perustuvat simulointimallit APROS Paper simulointiohjelmistolla. Työn tavoitteena on selvittää, miten kyseisten koneiden prosessit eroavat toisistaan ja arvioida, miten havaitut erot vaikuttavat prosessien stabiiliuteen. Työssä tarkastellaan periodisten häiriöiden vaimenemista prosessissa. Simuloinnissa herätteenä käytettiin puhdasta valkoista kohinaa, jonka avulla eri taajuistenperiodisten häiriöiden vaimenemista analysoitiin. Prosessien häiriövasteet esitetään taajuuskoordinaatistossa. Suurimmat erot prosessien välillä löytyivät viirakaivosta ja sen sekoitusdynamiikasta. Perinteisen viirakaivon todettiin muistuttavan käyttäytymiseltään sarjaan kytkettyjä ideaalisekoittimia, kun taas pienempitilavuuksisen fluumin todettiin käyttäytyvän lähes kuin putkiviive. Vaikka erotprosessitilavuudessa sekä viirakaivon sekoitusdynamiikassa olivat hyvin selkeät, havaittiin vain marginaalinen ero prosessin välillä periodisten häiriöiden vaimenemisessa, koska erot viiraretentiotasoissa vaikuttivat eniten simulointituloksia. Matalammalla viiraretentiolla operoivan paperikoneen todettiin vaimentavan tehokkaammin prosessihäiriöitä. Samalla retentiotasolla pienempitilavuuksisen prosessin todettiin vaimentavan hitaita prosessihäiriöitä marginaalisesti paremmin. Tutkituista paperikoneista toisella simuloitiin viiraosan vedenpoistomuutoksenvaikutusta viiraretentioon ja paperin koostumukseen. Lisäksi arvioitiin viiraretention säädön toimivuutta. Viiraosan listakengän vedenpoiston todettiin aiheuttavan merkittäviä sakeus- ja retentiohäiriöitä, mikäli sen avulla poistettavan kiintoaineen virtaus tuplaantuisi. Viiraretention säädön todettiin estävän häiriöiden kierron prosessissa, mutta siirtävän ne suoraan rainaan. Retention säädön eikuitenkaan todettu olevan suoranainen häiriön lähde.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biosidien toimittajat tavallisesti suorittavat biosidien annostelumäärien hallinnan paperi- ja kartonkiteollisuudessa. Useimmiten annostelun hallinta määritetään epäsuorilla menetelmillä, kuten esimerkiksi määrittämällä bakteerien kasvua. Biosidien tehoaineiden todellista konsentraatiota tai määrää prosessivesissä tai lopputuotteessa ei tavallisesti mitata. Diplomityössä kehitettiin kolmelle paperiteollisuudessa yleisesti käytetyllä biosidin tehoaineelle analyyttiset menetelmät. Menetelmät kehitettiin glutaraldehydille, 2,2-dibromi-3-nitriilipropionamidi:lle (DBNPA) ja 5-kloori-2-metyyli-4-isotiatsoliini-3-oni:lle (CMI). Kehitettyjä menetelmiä käytettiin tehoaineiden stabiilisuuden seuraamiseen vesiliuoksessa eri pH:ssa ja lämpötilassa. Lisäksi kartonkinäytteistä tehtiin uuttokokeita ja yritettiin kehittää uuttomenetelmät, joilla pystyttäisiin määrittämään biosidien tehoaineiden jäännöspitoisuuksia lopputuotteesta. Glutaraldehydille ja CMI:lle onnistuttiin kehittämään uuttomenetelmät, joilla pystyttiin määrittämään kartongista tutkittujen tehoaineiden jäännöspitoisuudet. Saadut tulokset vaikuttavat realistisilta. Glutaraldehydille ja DBNPA:lle tehtiin stabiilisuuskokeita ja tulokset ovat samankaltaisia mitä muut tutkijat ovat saaneet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microfibrillated cellulose (MFC) is known to enhance strength properties of paper. Improved strength usually means increased bonding which is strongly connected to dimensional instability of paper. Dimensional instability is due to changes in moisture content of paper; when paper is moistened it expands and when dried, it shrinks. Hygroexpansion is linked to end-use problems and excessive drying shrinkage consumes strength potential. Effective use of materials requires controlling of these phenomena. There isn’t yet data concerning dimensional stability of papers containing MFC which restricts wider use of MFC. Main objective of the work was to evaluate dimensional stability of wood-free paper containing different amounts of MFC. Sheets were dried with different methods to see how drying strains effected on drying shrinkage and hygroexpansion. Also tensile strength was measured to find out the effect of MFC. Results were compared to sheets containing kraft fines and in some test points cationic starch was used alongside with MFC. MFC increased the dimensional instability of freely dried sheets. As the amounts of MFC increased the effects on dimensional stability became more severe. However the fineness of MFC didn’t play any important role. Both hygroexpansion and drying shrinkage were decreased with cationic starch addition. Prevention of drying shrinkage over powered the effects of additives on hygroexpansion. Tensile strength improved up till 7 % addition amount which could be set as the upper limit of MFC addition when paper preparation and tensile strength are concerned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation considers the segmental durations of speech from the viewpoint of speech technology, especially speech synthesis. The idea is that better models of segmental durations lead to higher naturalness and better intelligibility. These features are the key factors for better usability and generality of synthesized speech technology. Even though the studies are based on a Finnish corpus the approaches apply to all other languages as well. This is possibly due to the fact that most of the studies included in this dissertation are about universal effects taking place on utterance boundaries. Also the methods invented and used here are suitable for any other study of another language. This study is based on two corpora of news reading speech and sentences read aloud. The other corpus is read aloud by a 39-year-old male, whilst the other consists of several speakers in various situations. The use of two corpora is twofold: it involves a comparison of the corpora and a broader view on the matters of interest. The dissertation begins with an overview to the phonemes and the quantity system in the Finnish language. Especially, we are covering the intrinsic durations of phonemes and phoneme categories, as well as the difference of duration between short and long phonemes. The phoneme categories are presented to facilitate the problem of variability of speech segments. In this dissertation we cover the boundary-adjacent effects on segmental durations. In initial positions of utterances we find that there seems to be initial shortening in Finnish, but the result depends on the level of detail and on the individual phoneme. On the phoneme level we find that the shortening or lengthening only affects the very first ones at the beginning of an utterance. However, on average, the effect seems to shorten the whole first word on the word level. We establish the effect of final lengthening in Finnish. The effect in Finnish has been an open question for a long time, whilst Finnish has been the last missing piece for it to be a universal phenomenon. Final lengthening is studied from various angles and it is also shown that it is not a mere effect of prominence or an effect of speech corpus with high inter- and intra-speaker variation. The effect of final lengthening seems to extend from the final to the penultimate word. On a phoneme level it reaches a much wider area than the initial effect. We also present a normalization method suitable for corpus studies on segmental durations. The method uses an utterance-level normalization approach to capture the pattern of segmental durations within each utterance. This prevents the impact of various problematic variations within the corpora. The normalization is used in a study on final lengthening to show that the results on the effect are not caused by variation in the material. The dissertation shows an implementation and prowess of speech synthesis on a mobile platform. We find that the rule-based method of speech synthesis is a real-time software solution, but the signal generation process slows down the system beyond real time. Future aspects of speech synthesis on limited platforms are discussed. The dissertation considers ethical issues on the development of speech technology. The main focus is on the development of speech synthesis with high naturalness, but the problems and solutions are applicable to any other speech technology approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor’s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque reference. This method is however parameter sensitive and requires a safety margin between the theoretical torque maximum and the actual torque limit. The DTC modulation principle allows however a direct load angle adjustment without any current control. In this work a direct load angle control method has been developed. The method keeps the drive stabile and allows the maximal utilisation of the drive without a safety margin in the torque limitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pluripotent cells have the potential to differentiate into all somatic cell types. As the adult human body is unable to regenerate various tissues, pluripotent cells provide an attractive source for regenerative medicine. Human embryonic stem cells (hESCs) can be isolated from blastocyst stage embryos and cultured in the laboratory environment. However, their use in regenerative medicine is restricted due to problems with immunosuppression by the host and ethical legislation. Recently, a new source of pluripotent cells was established via the direct reprogramming of somatic cells. These human induced pluripotent stem cells (hiPSCs) enable the production of patient specific cell types. However, numerous challenges, such as efficient reprogramming, optimal culture, directed differentiation, genetic stability and tumor risk need to be solved before the launch of therapeutic applications. The main objective of this thesis was to understand the unique properties of human pluripotent stem cells. The specific aims were to identify novel factors involved in maintaining pluripotency, characterize the effects of low oxygen culture on hESCs, and determine the high resolution changes in hESCs and hiPSCs during culture and reprogramming. As a result, the previously uncharacterized protein L1TD1 was determined to be specific for pluripotent cells and essential for the maintenance of pluripotency. The low oxygen culture supported undifferentiated growth and affected expression of stem cell associated transcripts. High resolution screening of hESCs identified a number of culture induced copy number variations and loss of heterozygosity changes. Further, screening of hiPSCs revealed that reprogramming induces high resolution alterations. The results obtained in this thesis have important implications for stem cell and cancer biology and the therapeutic potential of pluripotent cells.