12 resultados para SOLUTION-PHASE

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modifiering av metallytor med starkt adsorberade kirala organiska molekyler är eventuellt den mest relevanta teknik man vet i dag för att skapa kirala ytor. Den kan utnyttjas i katalytisk produktion av enantiomeriskt rena kirala föreningar som behövs t.ex. som läkemedel och aromkemikalier. Trots många fördelar av asymmetrisk heterogen katalys jämfört med andra sätt för att få kirala föreningar, har den ändå inte blivit ett allmänt verktyg för storskaliga tillämpningar. Detta beror t.ex. på brist på djupare kunskaper i katalytiska reaktionsmekanismer och ursprunget för asymmetrisk induktion. I denna studie användes molekylmodelleringstekniker för att studera asymmetriska, heterogena katalytiska system, speciellt hydrering av prokirala karbonylföreningar till motsvarande kirala alkoholer på cinchona-alkaloidmodifierade Pt-katalysatorer. 1-Fenyl-1,2-propandion (PPD) och några andra föreningar, som innehåller en prokiral C=O-grupp, användes som reaktanter. Konformationer av reaktanter och cinchona-alkaloider (som kallas modifierare) samt vätebundna 1:1-komplex mellan dem studerades i gas- och lösningsfas med metoder som baserar sig på vågfunktionsteori och täthetsfunktionalteori (DFT). För beräkningen av protonaffiniteter användes också högst noggranna kombinationsmetoder såsom G2(MP2). Den relativa populationen av modifierarnas konformationer varierade som funktion av modifieraren, dess protonering och lösningsmedlet. Flera reaktant–modifierareinteraktionsgeometrier beaktades. Slutsatserna på riktning av stereoselektivitet baserade sig på den relativa termodynamiska stabiliteten av de diastereomeriska reaktant–modifierare-komplexen samt energierna hos π- och π*-orbitalerna i den reaktiva karbonylgruppen. Adsorption och reaktioner på Pt(111)-ytan betraktades med DFT. Regioselektivitet i hydreringen av PPD och 2,3-hexandion kunde förklaras med molekyl–yta-interaktioner. Storleken och formen av klustret använt för att beskriva Pt-ytan inverkade inte bara på adsorptionsenergierna utan också på de relativa stabiliteterna av olika adsorptionsstrukturer av en molekyl. Populationerna av modifierarnas konformationer i gas- och lösningsfas korrelerade inte med populationerna på Pt-ytan eller med enantioselektiviteten i hydreringen av PPD på Pt–cinchona-katalysatorer. Vissa modifierares konformationer och reaktant–modifierare-interaktionsgeometrier var stabila bara på metallytan. Teoretiskt beräknade potentialenergiprofiler för hydrering av kirala α-hydroxiketoner på Pt implicerade preferens för parvis additionsmekanism för väte och selektiviteter i harmoni med experimenten. De uppnådda resultaten ökar uppfattningen om kirala heterogena katalytiska system och kunde därför utnyttjas i utvecklingen av nya, mera aktiva och selektiva kirala katalysatorer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The drug discovery process is facing new challenges in the evaluation process of the lead compounds as the number of new compounds synthesized is increasing. The potentiality of test compounds is most frequently assayed through the binding of the test compound to the target molecule or receptor, or measuring functional secondary effects caused by the test compound in the target model cells, tissues or organism. Modern homogeneous high-throughput-screening (HTS) assays for purified estrogen receptors (ER) utilize various luminescence based detection methods. Fluorescence polarization (FP) is a standard method for ER ligand binding assay. It was used to demonstrate the performance of two-photon excitation of fluorescence (TPFE) vs. the conventional one-photon excitation method. As result, the TPFE method showed improved dynamics and was found to be comparable with the conventional method. It also held potential for efficient miniaturization. Other luminescence based ER assays utilize energy transfer from a long-lifetime luminescent label e.g. lanthanide chelates (Eu, Tb) to a prompt luminescent label, the signal being read in a time-resolved mode. As an alternative to this method, a new single-label (Eu) time-resolved detection method was developed, based on the quenching of the label by a soluble quencher molecule when displaced from the receptor to the solution phase by an unlabeled competing ligand. The new method was paralleled with the standard FP method. It was shown to yield comparable results with the FP method and found to hold a significantly higher signal-tobackground ratio than FP. Cell-based functional assays for determining the extent of cell surface adhesion molecule (CAM) expression combined with microscopy analysis of the target molecules would provide improved information content, compared to an expression level assay alone. In this work, immune response was simulated by exposing endothelial cells to cytokine stimulation and the resulting increase in the level of adhesion molecule expression was analyzed on fixed cells by means of immunocytochemistry utilizing specific long-lifetime luminophore labeled antibodies against chosen adhesion molecules. Results showed that the method was capable of use in amulti-parametric assay for protein expression levels of several CAMs simultaneously, combined with analysis of the cellular localization of the chosen adhesion molecules through time-resolved luminescence microscopy inspection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last decades, the chemical synthesis of short oligonucleotides has become an important aspect of study due to the discovery of new functions for nucleic acids such as antisense oligonucleotides (ASOs), aptamers, DNAzymes, microRNA (miRNA) and small interfering RNA (siRNA). The applications in modern therapies and fundamental medicine on the treatment of different cancer diseases, viral infections and genetic disorders has established the necessity to develop scalable methods for their cheaper and easier industrial manufacture. While small scale solid-phase oligonucleotide synthesis is the method of choice in the field, various challenges still remain associated with the production of short DNA and RNA-oligomers in very large quantities. On the other hand, solution phase synthesis of oligonucleotides offers a more predictable scaling-up of the synthesis and is amenable to standard industrial manufacture techniques. In the present thesis, various protocols for the synthesis of short DNA and RNA oligomers have been studied on a peracetylated and methylated β-cyclodextrin, and also on a pentaerythritol-derived support. On using the peracetylated and methylated β-cyclodextrin soluble supports, the coupling cycle was simplified by replacement of the typical 5′-O-(4,4′-dimethoxytrityl) protecting group with an acid-labile acetal-protected 5′-O-(1-methoxy-1-methylethyl) group, which upon acid-catalyzed methanolysis released easily removable volatile products. For this reason monomeric building blocks 5′-O-(1-methoxy-1-methylethyl) 3′-(2-cyano-ethyl-N,N-diisopropylphosphoramidite) were synthesized. Alternatively, on using the precipitative pentaerythritol support, novel 2´-O-(2-cyanoethyl)-5´-O-(1-methoxy-1-methylethyl) protected phosphoramidite building blocks for RNA synthesis have been prepared and their applicability by the synthesis of a pentamer was demonstrated. Similarly, a method for the preparation of short RNAs from commercially available 5´-O-(4,4´-dimethoxytrityl)-2´-O-(tert-butyldimethyl-silyl)ribonucleoside 3´-(2-cyanoethyl-N,N-diisopropylphosphoramidite) building blocks has been developed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis is to present a solution to the quantum phase problem of the single-mode optical field. The solution is based on the use of phase shift covariant normalized positive operator measures. These measures describe realistic direct coherent state phase measurements such as the phase measurement schemes based on eight-port homodyne detection or heterodyne detection. The structure of covariant operator measures and, more generally, covariant sesquilinear form measures is analyzed in this work. Four different characterizations for phase shift covariant normalized positive operator measures are presented. The canonical covariant operator measure is definded and its properties are studied. Finally, some other suggested phase theories are introduced to investigate their connections to the covariant sesquilinear form measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic behavior of bothisothermal and non-isothermal single-column chromatographic reactors with an ion-exchange resin as the stationary phase was investigated. The reactor performance was interpreted by using results obtained when studying the effect of the resin properties on the equilibrium and kinetic phenomena occurring simultaneously in the reactor. Mathematical models were derived for each phenomenon and combined to simulate the chromatographic reactor. The phenomena studied includes phase equilibria in multicomponent liquid mixture¿ion-exchange resin systems, chemicalequilibrium in the presence of a resin catalyst, diffusion of liquids in gel-type and macroporous resins, and chemical reaction kinetics. Above all, attention was paid to the swelling behavior of the resins and how it affects the kinetic phenomena. Several poly(styrene-co-divinylbenzene) resins with different cross-link densities and internal porosities were used. Esterification of acetic acid with ethanol to produce ethyl acetate and water was used as a model reaction system. Choosing an ion-exchange resin with a low cross-link density is beneficial inthe case of the present reaction system: the amount of ethyl acetate as well the ethyl acetate to water mole ratio in the effluent stream increase with decreasing cross-link density. The enhanced performance of the reactor is mainly attributed to increasing reaction rate, which in turn originates from the phase equilibrium behavior of the system. Also mass transfer considerations favor the use ofresins with low cross-link density. The diffusion coefficients of liquids in the gel-type ion-exchange resins were found to fall rapidly when the extent of swelling became low. Glass transition of the polymer was not found to significantlyretard the diffusion in sulfonated PS¿DVB ion-exchange resins. It was also shown that non-isothermal operation of a chromatographic reactor could be used to significantly enhance the reactor performance. In the case of the exothermic modelreaction system and a near-adiabatic column, a positive thermal wave (higher temperature than in the initial state) was found to travel together with the reactive front. This further increased the conversion of the reactants. Diffusion-induced volume changes of the ion-exchange resins were studied in a flow-through cell. It was shown that describing the swelling and shrinking kinetics of the particles calls for a mass transfer model that explicitly includes the limited expansibility of the polymer network. A good description of the process was obtained by combining the generalized Maxwell-Stefan approach and an activity model that was derived from the thermodynamics of polymer solutions and gels. The swelling pressure in the resin phase was evaluated by using a non-Gaussian expression forthe polymer chain length distribution. Dimensional changes of the resin particles necessitate the use of non-standard mathematical tools for dynamic simulations. A transformed coordinate system, where the mass of the polymer was used as a spatial variable, was applied when simulating the chromatographic reactor columns as well as the swelling and shrinking kinetics of the resin particles. Shrinking of the particles in a column leads to formation of dead volume on top of the resin bed. In ordinary Eulerian coordinates, this results in a moving discontinuity that in turn causes numerical difficulties in the solution of the PDE system. The motion of the discontinuity was eliminated by spanning two calculation grids in the column that overlapped at the top of the resin bed. The reactive and non-reactive phase equilibrium data were correlated with a model derived from thethermodynamics of polymer solution and gels. The thermodynamic approach used inthis work is best suited at high degrees of swelling because the polymer matrixmay be in the glassy state when the extent of swelling is low.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystal growth is an essential phase in crystallization kinetics. The rate of crystal growth provides significant information for the design and control of crystallization processes; nevertheless, obtaining accurate growth rate data is still challenging due to a number of factors that prevail in crystal growth. In industrial crystallization, crystals are generally grown from multi-componentand multi-particle solutions under complicated hydrodynamic conditions; thus, it is crucial to increase the general understanding of the growth kinetics in these systems. The aim of this work is to develop a model of the crystal growth rate from solution. An extensive literature review of crystal growth focuses on themodelling of growth kinetics and thermodynamics, and new measuring techniques that have been introduced in the field of crystallization. The growth of a singlecrystal is investigated in binary and ternary systems. The binary system consists of potassium dihydrogen phosphate (KDP, crystallizing solute) and water (solvent), and the ternary system includes KDP, water and an organic admixture. The studied admixtures, urea, ethanol and 1-propanol, are employed at relatively highconcentrations (of up to 5.0 molal). The influence of the admixtures on the solution thermodynamics is studied using the Pitzer activity coefficient model. Theprediction method of the ternary solubility in the studied systems is introduced and verified. The growth rate of the KDP (101) face in the studied systems aremeasured in the growth cell as a function of supersaturation, the admixture concentration, the solution velocity over a crystal and temperature. In addition, the surface morphology of the KDP (101) face is studied using ex situ atomic force microscopy (AFM). The crystal growth rate in the ternary systems is modelled on the basis of the two-step growth model that contains the Maxwell-Stefan (MS) equations and a surface-reaction model. This model is used together with measuredcrystal growth rate data to develop a new method for the evaluation of the model parameters. The validation of the model is justified with experiments. The crystal growth rate in an imperfectly mixed suspension crystallizer is investigatedusing computational fluid dynamics (CFD). A solid-liquid suspension flow that includes multi-sized particles is described by the multi-fluid model as well as by a standard k-epsilon turbulence model and an interface momentum transfer model. The local crystal growth rate is determined from calculated flow information in a diffusion-controlled crystal growth regime. The calculated results are evaluated experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Boiling two-phase flow and the equations governing the motion of fluid in two-phase flows are discussed in this thesis. Disposition of the governing equations in three-dimensional complex geometries is considered from the perspective of the porous medium concept. The equations governing motion in two-phase flows were formulated, discretized and implemented in a subroutine for pressure-velocity solution utilizing the SIMPLE algorithm modified for two-phase flow. The subroutine was included in PORFLO, which is a three-dimensional 5-equation porous media model developed at VTT by Jaakko Miettinen. The development of two-phase flow and the resulting void fraction distribution was predicted in a geometry resembling a section of BWR fuel bundle in a couple of test cases using PORFLO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some of the world’s leading companies now compete by providing integrated solutions to identify and solve each customer’s business problem by providing services to design, integrate, operate and finance a product or system during its life cycle. At the same time, because of the requirements of new global economy, companies are implementing new integrated ERP systems. The objective of this thesis was to define how solution offering can be implemented in the integrated ERP system so that it is possible to sell, deliver and maintain solution offering with the new enterprise applications. The research was conducted as a qualitative case study research consisting of literature review, theme-interviews and an analysis phase. For a start this study introduces new insight for combining solution business, offering modeling and modern ERP system theories. The results of this research illustrate the limitations of an integrated ERP system to support solution business and show the need to develop a commercial product model in order to improve the combination of solution offering and IT systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The maximum realizable power throughput of power electronic converters may be limited or constrained by technical or economical considerations. One solution to this problemis to connect several power converter units in parallel. The parallel connection can be used to increase the current carrying capacity of the overall system beyond the ratings of individual power converter units. Thus, it is possible to use several lower-power converter units, produced in large quantities, as building blocks to construct high-power converters in a modular manner. High-power converters realized by using parallel connection are needed for example in multimegawatt wind power generation systems. Parallel connection of power converter units is also required in emerging applications such as photovoltaic and fuel cell power conversion. The parallel operation of power converter units is not, however, problem free. This is because parallel-operating units are subject to overcurrent stresses, which are caused by unequal load current sharing or currents that flow between the units. Commonly, the term ’circulatingcurrent’ is used to describe both the unequal load current sharing and the currents flowing between the units. Circulating currents, again, are caused by component tolerances and asynchronous operation of the parallel units. Parallel-operating units are also subject to stresses caused by unequal thermal stress distribution. Both of these problemscan, nevertheless, be handled with a proper circulating current control. To design an effective circulating current control system, we need information about circulating current dynamics. The dynamics of the circulating currents can be investigated by developing appropriate mathematical models. In this dissertation, circulating current models aredeveloped for two different types of parallel two-level three-phase inverter configurations. Themodels, which are developed for an arbitrary number of parallel units, provide a framework for analyzing circulating current generation mechanisms and developing circulating current control systems. In addition to developing circulating current models, modulation of parallel inverters is considered. It is illustrated that depending on the parallel inverter configuration and the modulation method applied, common-mode circulating currents may be excited as a consequence of the differential-mode circulating current control. To prevent the common-mode circulating currents that are caused by the modulation, a dual modulator method is introduced. The dual modulator basically consists of two independently operating modulators, the outputs of which eventually constitute the switching commands of the inverter. The two independently operating modulators are referred to as primary and secondary modulators. In its intended usage, the same voltage vector is fed to the primary modulators of each parallel unit, and the inputs of the secondary modulators are obtained from the circulating current controllers. To ensure that voltage commands obtained from the circulating current controllers are realizable, it must be guaranteed that the inverter is not driven into saturation by the primary modulator. The inverter saturation can be prevented by limiting the inputs of the primary and secondary modulators. Because of this, also a limitation algorithm is proposed. The operation of both the proposed dual modulator and the limitation algorithm is verified experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, the network vulnerability to natural hazards has been noticed. Moreover, operating on the limits of the network transmission capabilities have resulted in major outages during the past decade. One of the reasons for operating on these limits is that the network has become outdated. Therefore, new technical solutions are studied that could provide more reliable and more energy efficient power distributionand also a better profitability for the network owner. It is the development and price of power electronics that have made the DC distribution an attractive alternative again. In this doctoral thesis, one type of a low-voltage DC distribution system is investigated. Morespecifically, it is studied which current technological solutions, used at the customer-end, could provide better power quality for the customer when compared with the current system. To study the effect of a DC network on the customer-end power quality, a bipolar DC network model is derived. The model can also be used to identify the supply parameters when the V/kW ratio is approximately known. Although the model provides knowledge of the average behavior, it is shown that the instantaneous DC voltage ripple should be limited. The guidelines to choose an appropriate capacitance value for the capacitor located at the input DC terminals of the customer-end are given. Also the structure of the customer-end is considered. A comparison between the most common solutions is made based on their cost, energy efficiency, and reliability. In the comparison, special attention is paid to the passive filtering solutions since the filter is considered a crucial element when the lifetime expenses are determined. It is found out that the filter topology most commonly used today, namely the LC filter, does not provide economical advantage over the hybrid filter structure. Finally, some of the typical control system solutions are introduced and their shortcomings are presented. As a solution to the customer-end voltage regulation problem, an observer-based control scheme is proposed. It is shown how different control system structures affect the performance. The performance meeting the requirements is achieved by using only one output measurement, when operating in a rigid network. Similar performance can be achieved in a weak grid by DC voltage measurement. An additional improvement can be achieved when an adaptive gain scheduling-based control is introduced. As a conclusion, the final power quality is determined by a sum of various factors, and the thesis provides the guidelines for designing the system that improves the power quality experienced by the customer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, general approach is devised to model electrolyte sorption from aqueous solutions on solid materials. Electrolyte sorption is often considered as unwanted phenomenon in ion exchange and its potential as an independent separation method has not been fully explored. The solid sorbents studied here are porous and non-porous organic or inorganic materials with or without specific functional groups attached on the solid matrix. Accordingly, the sorption mechanisms include physical adsorption, chemisorption on the functional groups and partition restricted by electrostatic or steric factors. The model is tested in four Cases Studies dealing with chelating adsorption of transition metal mixtures, physical adsorption of metal and metalloid complexes from chloride solutions, size exclusion of electrolytes in nano-porous materials and electrolyte exclusion of electrolyte/non-electrolyte mixtures. The model parameters are estimated using experimental data from equilibrium and batch kinetic measurements, and they are used to simulate actual single-column fixed-bed separations. Phase equilibrium between the solution and solid phases is described using thermodynamic Gibbs-Donnan model and various adsorption models depending on the properties of the sorbent. The 3-dimensional thermodynamic approach is used for volume sorption in gel-type ion exchangers and in nano-porous adsorbents, and satisfactory correlation is obtained provided that both mixing and exclusion effects are adequately taken into account. 2-Dimensional surface adsorption models are successfully applied to physical adsorption of complex species and to chelating adsorption of transition metal salts. In the latter case, comparison is also made with complex formation models. Results of the mass transport studies show that uptake rates even in a competitive high-affinity system can be described by constant diffusion coefficients, when the adsorbent structure and the phase equilibrium conditions are adequately included in the model. Furthermore, a simplified solution based on the linear driving force approximation and the shrinking-core model is developed for very non-linear adsorption systems. In each Case Study, the actual separation is carried out batch-wise in fixed-beds and the experimental data are simulated/correlated using the parameters derived from equilibrium and kinetic data. Good agreement between the calculated and experimental break-through curves is usually obtained indicating that the proposed approach is useful in systems, which at first sight are very different. For example, the important improvement in copper separation from concentrated zinc sulfate solution at elevated temperatures can be correctly predicted by the model. In some cases, however, re-adjustment of model parameters is needed due to e.g. high solution viscosity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this research is to observe the state of customer value management in Outotec Oyj, determine the key development areas and develop a phase model with which to guide the development of a customer value based sales tool. The study was conducted with a constructive research approach with the focus of identifying a problem and developing a solution for the problem. As a basis for the study, the current literature involving customer value assessment and solution and customer value selling was studied. The data was collected by conducting 16 interviews in two rounds within the company and it was analyzed by coding openly. First, seven important development areas were identified, out of which the most critical were “Customer value mindset inside the company” and “Coordination of customer value management activities”. Utilizing these seven areas three functionality requirements, “Preparation”, “Outotec’s value creation and communication” and “Documentation” and three development requirements for a customer value sales tool were identified. The study concluded with the formulation of a phase model for building a customer value based sales tool. The model included five steps that were defined as 1) Enable customer value utilization, 2) Connect with the customer, 3) Create customer value, 4) Define tool to facilitate value selling and 5) Develop sales tool. Further practical activities were also recommended as a guide for executing the phase model.