29 resultados para Reliability in refrigeration systems
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Sustainability in software system is still a new practice that most software developers and companies are trying to incorporate into their software development lifecycle and has been largely discussed in academia. Sustainability is a complex concept viewed from economic, environment and social dimensions with several definitions proposed making sometimes the concept of sustainability very fuzzy and difficult to apply and assess in software systems. This has hindered the adoption of sustainability in the software industry. A little research explores sustainability as a quality property of software products and services to answer questions such as; How to quantify sustainability as a quality construct in the same way as other quality attributes such as security, usability and reliability? How can it be applied to software systems? What are the measures and measurement scale of sustainability? The Goal of this research is to investigate the definitions, perceptions and measurement of sustainability from the quality perspective. Grounded in the general theory of software measurement, the aim is to develop a method that decomposes sustainability in factors, criteria and metrics. The Result is a method to quantify and access sustainability of software systems while incorporating management and users concern. Conclusion: The method will empower the ability of companies to easily adopt sustainability while facilitating its integration to the software development process and tools. It will also help companies to measure sustainability of their software products from economic, environmental, social, individual and technological dimension.
Resumo:
The purpose of this study was to investigate some important features of granular flows and suspension flows by computational simulation methods. Granular materials have been considered as an independent state ofmatter because of their complex behaviors. They sometimes behave like a solid, sometimes like a fluid, and sometimes can contain both phases in equilibrium. The computer simulation of dense shear granular flows of monodisperse, spherical particles shows that the collisional model of contacts yields the coexistence of solid and fluid phases while the frictional model represents a uniform flow of fluid phase. However, a comparison between the stress signals from the simulations and experiments revealed that the collisional model would result a proper match with the experimental evidences. Although the effect of gravity is found to beimportant in sedimentation of solid part, the stick-slip behavior associated with the collisional model looks more similar to that of experiments. The mathematical formulations based on the kinetic theory have been derived for the moderatesolid volume fractions with the assumption of the homogeneity of flow. In orderto make some simulations which can provide such an ideal flow, the simulation of unbounded granular shear flows was performed. Therefore, the homogeneous flow properties could be achieved in the moderate solid volume fractions. A new algorithm, namely the nonequilibrium approach was introduced to show the features of self-diffusion in the granular flows. Using this algorithm a one way flow can beextracted from the entire flow, which not only provides a straightforward calculation of self-diffusion coefficient but also can qualitatively determine the deviation of self-diffusion from the linear law at some regions nearby the wall inbounded flows. Anyhow, the average lateral self-diffusion coefficient, which was calculated by the aforementioned method, showed a desirable agreement with thepredictions of kinetic theory formulation. In the continuation of computer simulation of shear granular flows, some numerical and theoretical investigations were carried out on mass transfer and particle interactions in particulate flows. In this context, the boundary element method and its combination with the spectral method using the special capabilities of wavelets have been introduced as theefficient numerical methods to solve the governing equations of mass transfer in particulate flows. A theoretical formulation of fluid dispersivity in suspension flows revealed that the fluid dispersivity depends upon the fluid properties and particle parameters as well as the fluid-particle and particle-particle interactions.
Resumo:
Muokatun matriisi-geometrian tekniikan kehitys yleimmäksi jonoksi on esitelty tässä työssä. Jonotus systeemi koostuu useista jonoista joilla on rajatut kapasiteetit. Tässä työssä on myös tutkittu PH-tyypin jakautumista kun ne jaetaan. Rakenne joka vastaa lopullista Markovin ketjua jossa on itsenäisiä matriiseja joilla on QBD rakenne. Myös eräitä rajallisia olotiloja on käsitelty tässä työssä. Sen esitteleminen matriisi-geometrisessä muodossa, muokkaamalla matriisi-geometristä ratkaisua on tämän opinnäytetyön tulos.
Resumo:
Tässä päättötyössä annetaan kuvaus kehitetystä sovelluksesta Quasi Birth Death processien ratkaisuun. Tämä ohjelma on tähän mennessä ainutlaatuinen ja sen avulla voi ratkaista sarjan tehtäviä ja sitä tarvitaan kommunikaatio systeemien analyysiin. Mainittuun sovellukseen on annettu kuvaus ja määritelmä. Lyhyt kuvaus toisesta sovelluksesta Quasi Birth Death prosessien tehtävien ratkaisuun on myös annettu
Resumo:
This thesis deals with a hardware accelerated Java virtual machine, named REALJava. The REALJava virtual machine is targeted for resource constrained embedded systems. The goal is to attain increased computational performance with reduced power consumption. While these objectives are often seen as trade-offs, in this context both of them can be attained simultaneously by using dedicated hardware. The target level of the computational performance of the REALJava virtual machine is initially set to be as fast as the currently available full custom ASIC Java processors. As a secondary goal all of the components of the virtual machine are designed so that the resulting system can be scaled to support multiple co-processor cores. The virtual machine is designed using the hardware/software co-design paradigm. The partitioning between the two domains is flexible, allowing customizations to the resulting system, for instance the floating point support can be omitted from the hardware in order to decrease the size of the co-processor core. The communication between the hardware and the software domains is encapsulated into modules. This allows the REALJava virtual machine to be easily integrated into any system, simply by redesigning the communication modules. Besides the virtual machine and the related co-processor architecture, several performance enhancing techniques are presented. These include techniques related to instruction folding, stack handling, method invocation, constant loading and control in time domain. The REALJava virtual machine is prototyped using three different FPGA platforms. The original pipeline structure is modified to suit the FPGA environment. The performance of the resulting Java virtual machine is evaluated against existing Java solutions in the embedded systems field. The results show that the goals are attained, both in terms of computational performance and power consumption. Especially the computational performance is evaluated thoroughly, and the results show that the REALJava is more than twice as fast as the fastest full custom ASIC Java processor. In addition to standard Java virtual machine benchmarks, several new Java applications are designed to both verify the results and broaden the spectrum of the tests.
Resumo:
The performance of Grid connected Photovoltaic System working with DCBoost stage is investigated. The DC-Boost Converter topology is deduced from three phase half controlled bridge and controlled by Sliding Mode Control. Due to the fact that Grid connected Photovoltaic System includes Solar cells as a DC source and inverter for grid connection, those are under the scope of this research as well. The advantages of using MPPT are analyzed. The system is simulated in Matlab-Simulink™ environment.
Resumo:
In this Thesis I discuss the exact dynamics of simple non-Markovian systems. I focus on fundamental questions at the core of non-Markovian theory and investigate the dynamics of quantum correlations under non-Markovian decoherence. In the first context I present the connection between two different non-Markovian approaches, and compare two distinct definitions of non-Markovianity. The general aim is to characterize in exemplary cases which part of the environment is responsible for the feedback of information typical of non- Markovian dynamics. I also show how such a feedback of information is not always described by certain types of master equations commonly used to tackle non-Markovian dynamics. In the second context I characterize the dynamics of two qubits in a common non-Markovian reservoir, and introduce a new dynamical effect in a wellknown model, i.e., two qubits under depolarizing channels. In the first model the exact solution of the dynamics is found, and the entanglement behavior is extensively studied. The non-Markovianity of the reservoir and reservoirmediated-interaction between the qubits cause non-trivial dynamical features. The dynamical interplay between different types of correlations is also investigated. In the second model the study of quantum and classical correlations demonstrates the existence of a new effect: the sudden transition between classical and quantum decoherence. This phenomenon involves the complete preservation of the initial quantum correlations for long intervals of time of the order of the relaxation time of the system.
Resumo:
The modern society is getting increasingly dependent on software applications. These run on processors, use memory and account for controlling functionalities that are often taken for granted. Typically, applications adjust the functionality in response to a certain context that is provided or derived from the informal environment with various qualities. To rigorously model the dependence of an application on a context, the details of the context are abstracted and the environment is assumed stable and fixed. However, in a context-aware ubiquitous computing environment populated by autonomous agents, a context and its quality parameters may change at any time. This raises the need to derive the current context and its qualities at runtime. It also implies that a context is never certain and may be subjective, issues captured by the context’s quality parameter of experience-based trustworthiness. Given this, the research question of this thesis is: In what logical topology and by what means may context provided by autonomous agents be derived and formally modelled to serve the context-awareness requirements of an application? This research question also stipulates that the context derivation needs to incorporate the quality of the context. In this thesis, we focus on the quality of context parameter of trustworthiness based on experiences having a level of certainty and referral experiences, thus making trustworthiness reputation based. Hence, in this thesis we seek a basis on which to reason and analyse the inherently inaccurate context derived by autonomous agents populating a ubiquitous computing environment in order to formally model context-awareness. More specifically, the contribution of this thesis is threefold: (i) we propose a logical topology of context derivation and a method of calculating its trustworthiness, (ii) we provide a general model for storing experiences and (iii) we formalise the dependence between the logical topology of context derivation and its experience-based trustworthiness. These contributions enable abstraction of a context and its quality parameters to a Boolean decision at runtime that may be formally reasoned with. We employ the Action Systems framework for modelling this. The thesis is a compendium of the author’s scientific papers, which are republished in Part II. Part I introduces the field of research by providing the mending elements for the thesis to be a coherent introduction for addressing the research question. In Part I we also review a significant body of related literature in order to better illustrate our contributions to the research field.
Resumo:
The purpose of this thesis is twofold. The first and major part is devoted to sensitivity analysis of various discrete optimization problems while the second part addresses methods applied for calculating measures of solution stability and solving multicriteria discrete optimization problems. Despite numerous approaches to stability analysis of discrete optimization problems two major directions can be single out: quantitative and qualitative. Qualitative sensitivity analysis is conducted for multicriteria discrete optimization problems with minisum, minimax and minimin partial criteria. The main results obtained here are necessary and sufficient conditions for different stability types of optimal solutions (or a set of optimal solutions) of the considered problems. Within the framework of quantitative direction various measures of solution stability are investigated. A formula for a quantitative characteristic called stability radius is obtained for the generalized equilibrium situation invariant to changes of game parameters in the case of the H¨older metric. Quality of the problem solution can also be described in terms of robustness analysis. In this work the concepts of accuracy and robustness tolerances are presented for a strategic game with a finite number of players where initial coefficients (costs) of linear payoff functions are subject to perturbations. Investigation of stability radius also aims to devise methods for its calculation. A new metaheuristic approach is derived for calculation of stability radius of an optimal solution to the shortest path problem. The main advantage of the developed method is that it can be potentially applicable for calculating stability radii of NP-hard problems. The last chapter of the thesis focuses on deriving innovative methods based on interactive optimization approach for solving multicriteria combinatorial optimization problems. The key idea of the proposed approach is to utilize a parameterized achievement scalarizing function for solution calculation and to direct interactive procedure by changing weighting coefficients of this function. In order to illustrate the introduced ideas a decision making process is simulated for three objective median location problem. The concepts, models, and ideas collected and analyzed in this thesis create a good and relevant grounds for developing more complicated and integrated models of postoptimal analysis and solving the most computationally challenging problems related to it.
Resumo:
In this work mathematical programming models for structural and operational optimisation of energy systems are developed and applied to a selection of energy technology problems. The studied cases are taken from industrial processes and from large regional energy distribution systems. The models are based on Mixed Integer Linear Programming (MILP), Mixed Integer Non-Linear Programming (MINLP) and on a hybrid approach of a combination of Non-Linear Programming (NLP) and Genetic Algorithms (GA). The optimisation of the structure and operation of energy systems in urban regions is treated in the work. Firstly, distributed energy systems (DES) with different energy conversion units and annual variations of consumer heating and electricity demands are considered. Secondly, district cooling systems (DCS) with cooling demands for a large number of consumers are studied, with respect to a long term planning perspective regarding to given predictions of the consumer cooling demand development in a region. The work comprises also the development of applications for heat recovery systems (HRS), where paper machine dryer section HRS is taken as an illustrative example. The heat sources in these systems are moist air streams. Models are developed for different types of equipment price functions. The approach is based on partitioning of the overall temperature range of the system into a number of temperature intervals in order to take into account the strong nonlinearities due to condensation in the heat recovery exchangers. The influence of parameter variations on the solutions of heat recovery systems is analysed firstly by varying cost factors and secondly by varying process parameters. Point-optimal solutions by a fixed parameter approach are compared to robust solutions with given parameter variation ranges. In the work enhanced utilisation of excess heat in heat recovery systems with impingement drying, electricity generation with low grade excess heat and the use of absorption heat transformers to elevate a stream temperature above the excess heat temperature are also studied.
Resumo:
State-of-the-art predictions of atmospheric states rely on large-scale numerical models of chaotic systems. This dissertation studies numerical methods for state and parameter estimation in such systems. The motivation comes from weather and climate models and a methodological perspective is adopted. The dissertation comprises three sections: state estimation, parameter estimation and chemical data assimilation with real atmospheric satellite data. In the state estimation part of this dissertation, a new filtering technique based on a combination of ensemble and variational Kalman filtering approaches, is presented, experimented and discussed. This new filter is developed for large-scale Kalman filtering applications. In the parameter estimation part, three different techniques for parameter estimation in chaotic systems are considered. The methods are studied using the parameterized Lorenz 95 system, which is a benchmark model for data assimilation. In addition, a dilemma related to the uniqueness of weather and climate model closure parameters is discussed. In the data-oriented part of this dissertation, data from the Global Ozone Monitoring by Occultation of Stars (GOMOS) satellite instrument are considered and an alternative algorithm to retrieve atmospheric parameters from the measurements is presented. The validation study presents first global comparisons between two unique satellite-borne datasets of vertical profiles of nitrogen trioxide (NO3), retrieved using GOMOS and Stratospheric Aerosol and Gas Experiment III (SAGE III) satellite instruments. The GOMOS NO3 observations are also considered in a chemical state estimation study in order to retrieve stratospheric temperature profiles. The main result of this dissertation is the consideration of likelihood calculations via Kalman filtering outputs. The concept has previously been used together with stochastic differential equations and in time series analysis. In this work, the concept is applied to chaotic dynamical systems and used together with Markov chain Monte Carlo (MCMC) methods for statistical analysis. In particular, this methodology is advocated for use in numerical weather prediction (NWP) and climate model applications. In addition, the concept is shown to be useful in estimating the filter-specific parameters related, e.g., to model error covariance matrix parameters.
Influence of surface functionalization on the behavior of silica nanoparticles in biological systems
Resumo:
Personalized nanomedicine has been shown to provide advantages over traditional clinical imaging, diagnosis, and conventional medical treatment. Using nanoparticles can enhance and clarify the clinical targeting and imaging, and lead them exactly to the place in the body that is the goal of treatment. At the same time, one can reduce the side effects that usually occur in the parts of the body that are not targets for treatment. Nanoparticles are of a size that can penetrate into cells. Their surface functionalization offers a way to increase their sensitivity when detecting target molecules. In addition, it increases the potential for flexibility in particle design, their therapeutic function, and variation possibilities in diagnostics. Mesoporous nanoparticles of amorphous silica have attractive physical and chemical characteristics such as particle morphology, controllable pore size, and high surface area and pore volume. Additionally, the surface functionalization of silica nanoparticles is relatively straightforward, which enables optimization of the interaction between the particles and the biological system. The main goal of this study was to prepare traceable and targetable silica nanoparticles for medical applications with a special focus on particle dispersion stability, biocompatibility, and targeting capabilities. Nanoparticle properties are highly particle-size dependent and a good dispersion stability is a prerequisite for active therapeutic and diagnostic agents. In the study it was shown that traceable streptavidin-conjugated silica nanoparticles which exhibit a good dispersibility could be obtained by the suitable choice of a proper surface functionalization route. Theranostic nanoparticles should exhibit sufficient hydrolytic stability to effectively carry the medicine to the target cells after which they should disintegrate and dissolve. Furthermore, the surface groups should stay at the particle surface until the particle has been internalized by the cell in order to optimize cell specificity. Model particles with fluorescently-labeled regions were tested in vitro using light microscopy and image processing technology, which allowed a detailed study of the disintegration and dissolution process. The study showed that nanoparticles degrade more slowly outside, as compared to inside the cell. The main advantage of theranostic agents is their successful targeting in vitro and in vivo. Non-porous nanoparticles using monoclonal antibodies as guiding ligands were tested in vitro in order to follow their targeting ability and internalization. In addition to the targeting that was found successful, a specific internalization route for the particles could be detected. In the last part of the study, the objective was to clarify the feasibility of traceable mesoporous silica nanoparticles, loaded with a hydrophobic cancer drug, being applied for targeted drug delivery in vitro and in vivo. Particles were provided with a small molecular targeting ligand. In the study a significantly higher therapeutic effect could be achieved with nanoparticles compared to free drug. The nanoparticles were biocompatible and stayed in the tumor for a longer time than a free medicine did, before being eliminated by renal excretion. Overall, the results showed that mesoporous silica nanoparticles are biocompatible, biodegradable drug carriers and that cell specificity can be achieved both in vitro and in vivo.
Resumo:
This thesis is a literature study that develops a conceptual model of decision making and decision support in service systems. The study is related to the Ä-Logi, Intelligent Service Logic for Welfare Sector Services research project, and the objective of the study is to develop the necessary theoretical framework to enable further research based on the research project results and material. The study first examines the concepts of service and service systems, focusing on understanding the characteristics of service systems and their implications for decision making and decision support to provide the basis for the development of the conceptual model. Based on the identified service system characteristics, an integrated model of service systems is proposed that views service systems through a number of interrelated perspectives that each offer different, but complementary, implications on the nature of decision making and the requirements for decision support in service systems. Based on the model, it is proposed that different types of decision making contexts can be identified in service systems that may be dominated by different types of decision making processes and where different types of decision support may be required, depending on the characteristics of the decision making context and its decision making processes. The proposed conceptual model of decision making and decision support in service systems examines the characteristics of decision making contexts and processes in service systems, and their typical requirements for decision support. First, a characterization of different types of decision making contexts in service systems is proposed based on the Cynefin framework and the identified service system characteristics. Second, the nature of decision making processes in service systems is proposed to be dual, with both rational and naturalistic decision making processes existing in service systems, and having an important and complementary role in decision making in service systems. Finally, a characterization of typical requirements for decision support in service systems is proposed that examines the decision support requirements associated with different types of decision making processes in characteristically different types of decision making contexts. It is proposed that decision support for the decision making processes that are based on rational decision making can be based on organizational decision support models, while decision support for the decision making processes that are based on naturalistic decision making should be based on supporting the decision makers’ situation awareness and facilitating the development of their tacit knowledge of the system and its tasks. Based on the proposed conceptual model a further research process is proposed. The study additionally provides a number of new perspectives on the characteristics of service systems, and the nature of decision making and requirements for decision support in service systems that can potentially provide a basis for further discussion and research, and support the practice alike.
Resumo:
Pumping, fan and compressor systems consume most of the motor electricity power in both the industrial and services sectors. A variable speed drive brings relevant improvements in a fluid system leading to energy saving that further on can be translated into Mtons reduction of CO 2 emissions. Standards and regulations are being adopted for fluid handling systems to limit the less efficiency pumps out of the European market on the coming years and a greater potential in energy savings is dictated by the Energy Efficiency Index (EEI) requirements for the whole pumping system and integrated pumps. Electric motors also have an International Efficiency (IE) classification in order to introduce higher efficiency motors into the market. In this thesis, the applicability of mid-size common electric motor types to industrial pumping system took place comparing the motor efficiency characteristics with each other and by analyzing the effect of motor dimensioning on the pumping system and its impact in the energy consumption.