3 resultados para Preclinical drug testing
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Alzheimer’s disease (AD) is the most common form of dementia. Characteristic changes in an AD brain are the formation of β-amyloid protein (Aβ) plaques and neurofibrillary tangles, though other alterations in the brain have also been connected to AD. No cure is available for AD and it is one of the leading causes of death among the elderly in developed countries. Liposomes are biocompatible and biodegradable spherical phospholipid bilayer vesicles that can enclose various compounds. Several functional groups can be attached on the surface of liposomes in order to achieve long-circulating target-specific liposomes. Liposomes can be utilized as drug carriers and vehicles for imaging agents. Positron emission tomography (PET) is a non-invasive imaging method to study biological processes in living organisms. In this study using nucleophilic 18F-labeling synthesis, various synthesis approaches and leaving groups for novel PET imaging tracers have been developed to target AD pathology in the brain. The tracers were the thioflavin derivative [18F]flutemetamol, curcumin derivative [18F]treg-curcumin, and functionalized [18F]nanoliposomes, which all target Aβ in the AD brain. These tracers were evaluated using transgenic AD mouse models. In addition, 18F-labeling synthesis was developed for a tracer targeting the S1P3 receptor. The chosen 18F-fluorination strategy had an effect on the radiochemical yield and specific activity of the tracers. [18F]Treg-curcumin and functionalized [18F]nanoliposomes had low uptake in AD mouse brain, whereas [18F]flutemetamol exhibited the appropriate properties for preclinical Aβ-imaging. All of these tracers can be utilized in studies of the pathology and treatment of AD and related diseases.
Resumo:
Skeletal tissue is constantly remodeled in a process where osteoclasts resorb old bone and osteoblasts form new bone. Balance in bone remodeling is related to age, gender and genetic factors, but also many skeletal diseases, such as osteoporosis and cancer-induced bone metastasis, cause imbalance in bone turnover and lead to decreased bone mass and increased fracture risk. Biochemical markers of bone turnover are surrogates for bone metabolism and may be used as indicators of the balance between bone resorption and formation. They are released during the remodeling process and can be conveniently and reliably measured from blood or urine by immunoassays. Most commonly used bone formation markers include N-terminal propeptides of type I collagen (PINP) and osteocalcin, whereas tartrate-resistant acid phosphatase isoform 5b (TRACP 5b) and C-terminal cross-linked telopeptide of type I collagen (CTX) are common resorption markers. Of these, PINP has been, until recently, the only marker not commercially available for preclinical use. To date, widespread use of bone markers is still limited due to their unclear biological significance, variability, and insufficient evidence of their prognostic value to reflect long term changes. In this study, the feasibility of bone markers as predictors of drug efficacy in preclinical osteoporosis models was elucidated. A non-radioactive PINP immunoassay for preclinical use was characterized and validated. The levels of PINP, N-terminal mid-fragment of osteocalcin, TRACP 5b and CTX were studied in preclinical osteoporosis models and the results were compared with the results obtained by traditional analysis methods such as histology, densitometry and microscopy. Changes in all bone markers at early timepoints correlated strongly with the changes observed in bone mass and bone quality parameters at the end of the study. TRACP 5b correlated strongly with the osteoclast number and CTX correlated with the osteoclast activity in both in vitro and in vivo studies. The concept “resorption index” was applied to the relation of CTX/TRACP 5b to describe the mean osteoclast activity. The index showed more substantial changes than either of the markers alone in the preclinical osteoporosis models used in this study. PINP was strongly associated with bone formation whereas osteocalcin was associated with both bone formation and resorption. These results provide novel insight into the feasibility of PINP, osteocalcin, TRACP 5b and CTX as predictors of drug efficacy in preclinical osteoporosis models. The results support clinical findings which indicate that short-term changes of these markers reflect long-term responses in bone mass and quality. Furthermore, this information may be useful when considering cost-efficient and clinically predictive drug screening and development assays for mining new drug candidates for skeletal diseases.
Resumo:
Vascular adhesion protein-1 (VAP-1), which belongs to the copper amine oxidases (CAOs), is a validated drug target in inflammatory diseases. Inhibition of VAP-1 blocks the leukocyte trafficking to sites of inflammation and alleviates inflammatory reactions. In this study, a novel set of potent pyridazinone inhibitors is presented together with their X-ray structure complexes with VAP-1. The crystal structure of serum VAP-1 (sVAP-1) revealed an imidazole binding site in the active site channel and, analogously, the pyridazinone inhibitors were designed to bind into the channel. This is the first time human VAP-1 has been crystallized with a reversible inhibitor and the structures reveal detailed information of the binding mode on the atomic level. Similarly to some earlier studied inhibitors of human VAP-1, the designed pyridazinone inhibitors bind rodent VAP-1 with a lower affinity than human VAP-1. Therefore, we made homology models of rodent VAP-1 and compared human and rodent enzymes to determine differences that might affect the inhibitor binding. The comparison of the crystal structures of the human VAP-1 and the mouse VAP-1 homology model revealed key differences important for the species specific binding properties. In general, the channel in mouse VAP-1 is more narrow and polar than the channel in human VAP-1, which is wider and more hydrophobic. The differences are located in the channel leading to the active site, as well as, in the entrance to the active site channel. The information obtained from these studies is of great importance for the development and design of drugs blocking the activity of human VAP-1, as rodents are often used for in vivo testing of candidate drugs. In order to gain more insight into the selective binding properties of the different CAOs in one species a comprehensive evolutionary study of mammalian CAOs was performed. We found that CAOs can be classified into sub-families according to the residues X1 and X2 of the Thr/Ser-X1-X2-Asn-Tyr-Asp active site motif. In the phylogenetic tree, CAOs group into diamine oxidase, retina specific amine oxidase and VAP-1/serum amine oxidase clades based on the residue in the position X2. We also found that VAP-1 and SAO can be further differentiated based on the residue in the position X1. This is the first large-scale comparison of CAO sequences, which explains some of the reasons for the unique substrate specificities within the CAO family.