17 resultados para Non-quasi-static measurements
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Tässä diplomityössä tutkitaan paalutuskoneen stabiliteetti- elivakavuuslaskennan toteuttamista yleisesti käytetyn monikappaledynamiikan ohjelmiston avulla. Vakavuuslaskenta kuuluu olennaisena osana paalutuskoneen suunnitteluun ja siitä saadut tulokset asettavat rajat massoille, joita paalutuskone pystyy turvallisesti käsittelemään. Tutkittavana kohteena oli uudentyyppinen poraavapaalutuskone, josta saatiin myös todellista mittaustietoa työssä laaditun simulointimallin toimivuuden arvioimiseksi. Työssä kokeiltiin erityisesti ohjelmiston tarjoamia keinoja laskentaprosessin yksinkertaistamiseksi jasimulointimallin käytön helpottamiseksi. Koska simulointimalli haluttiin säilyttää mahdollisimman yksinkertaisena, porakoneen komponentit mallinnettiin jäykkinä. Mallin ratkaisussa käytettiin staattista ja kvasistaattista analyysia. Dynaamisten voimien vaikutus porakoneeseen otettiin mallissa huomioon lisäämällä massakeskipisteisiin vastaavat pistevoimat.
Resumo:
In a centrifugal compressor the flow around the diffuser is collected and led to the pipe system by a spiral-shaped volute. In this study a single-stage centrifugal compressor with three different volutes is investigated. The compressorwas first equipped with the original volute, the cross-section of which was a combination of a rectangle and semi-circle. Next a new volute with a fully circular cross-section was designed and manufactured. Finally, the circular volute wasmodified by rounding the tongue and smoothing the tongue area. The overall performance of the compressor as well as the static pressure distribution after the impeller and on the volute surface were measured. The flow entering the volute was measured using a three-hole Cobra-probe, and flow visualisations were carriedout in the exit cone of the volute. In addition, the radial force acting on theimpeller was measured using magnetic bearings. The complete compressor with thecircular volute (inlet pipe, full impeller, diffuser, volute and outlet pipe) was also modelled using computational fluid dynamics (CFD). A fully 3-D viscous flow was solved using a Navier-Stokes solver, Finflo, developed at Helsinki University of Technology. Chien's k-e model was used to take account of the turbulence. The differences observed in the performance of the different volutes were quite small. The biggest differences were at low speeds and high volume flows,i.e. when the flow entered the volute most radially. In this operating regime the efficiency of the compressor with the modified circular volute was about two percentage points higher than with the other volutes. Also, according to the Cobra-probe measurements and flow visualisations, the modified circular volute performed better than the other volutes in this operating area. The circumferential static pressure distribution in the volute showed increases at low flow, constant distribution at the design flow and decrease at high flow. The non-uniform static pressure distribution of the volute was transmitted backwards across the vaneless diffuser and observed at the impeller exit. At low volume flow a strong two-wave pattern developed into the static pressure distribution at the impeller exit due to the response of the impeller to the non-uniformity of pressure. The radial force of the impeller was the greatest at the choke limit, the smallest atthe design flow, and moderate at low flow. At low flow the force increase was quite mild, whereas the increase at high flow was rapid. Thus, the non-uniformityof pressure and the force related to it are strong especially at high flow. Theforce caused by the modified circular volute was weaker at choke and more symmetric as a function of the volume flow than the force caused by the other volutes.
Resumo:
With the shift towards many-core computer architectures, dataflow programming has been proposed as one potential solution for producing software that scales to a varying number of processor cores. Programming for parallel architectures is considered difficult as the current popular programming languages are inherently sequential and introducing parallelism is typically up to the programmer. Dataflow, however, is inherently parallel, describing an application as a directed graph, where nodes represent calculations and edges represent a data dependency in form of a queue. These queues are the only allowed communication between the nodes, making the dependencies between the nodes explicit and thereby also the parallelism. Once a node have the su cient inputs available, the node can, independently of any other node, perform calculations, consume inputs, and produce outputs. Data ow models have existed for several decades and have become popular for describing signal processing applications as the graph representation is a very natural representation within this eld. Digital lters are typically described with boxes and arrows also in textbooks. Data ow is also becoming more interesting in other domains, and in principle, any application working on an information stream ts the dataflow paradigm. Such applications are, among others, network protocols, cryptography, and multimedia applications. As an example, the MPEG group standardized a dataflow language called RVC-CAL to be use within reconfigurable video coding. Describing a video coder as a data ow network instead of with conventional programming languages, makes the coder more readable as it describes how the video dataflows through the different coding tools. While dataflow provides an intuitive representation for many applications, it also introduces some new problems that need to be solved in order for data ow to be more widely used. The explicit parallelism of a dataflow program is descriptive and enables an improved utilization of available processing units, however, the independent nodes also implies that some kind of scheduling is required. The need for efficient scheduling becomes even more evident when the number of nodes is larger than the number of processing units and several nodes are running concurrently on one processor core. There exist several data ow models of computation, with different trade-offs between expressiveness and analyzability. These vary from rather restricted but statically schedulable, with minimal scheduling overhead, to dynamic where each ring requires a ring rule to evaluated. The model used in this work, namely RVC-CAL, is a very expressive language, and in the general case it requires dynamic scheduling, however, the strong encapsulation of dataflow nodes enables analysis and the scheduling overhead can be reduced by using quasi-static, or piecewise static, scheduling techniques. The scheduling problem is concerned with nding the few scheduling decisions that must be run-time, while most decisions are pre-calculated. The result is then an, as small as possible, set of static schedules that are dynamically scheduled. To identify these dynamic decisions and to find the concrete schedules, this thesis shows how quasi-static scheduling can be represented as a model checking problem. This involves identifying the relevant information to generate a minimal but complete model to be used for model checking. The model must describe everything that may affect scheduling of the application while omitting everything else in order to avoid state space explosion. This kind of simplification is necessary to make the state space analysis feasible. For the model checker to nd the actual schedules, a set of scheduling strategies are de ned which are able to produce quasi-static schedulers for a wide range of applications. The results of this work show that actor composition with quasi-static scheduling can be used to transform data ow programs to t many different computer architecture with different type and number of cores. This in turn, enables dataflow to provide a more platform independent representation as one application can be fitted to a specific processor architecture without changing the actual program representation. Instead, the program representation is in the context of design space exploration optimized by the development tools to fit the target platform. This work focuses on representing the dataflow scheduling problem as a model checking problem and is implemented as part of a compiler infrastructure. The thesis also presents experimental results as evidence of the usefulness of the approach.
Resumo:
Augmented Reality (AR) applications often require knowledge of the user’s position in some global coordinate system in order to draw the augmented content to its correct position on the screen. The most common method for coarse positioning is the Global Positioning System (GPS). One of the advantages of GPS is that GPS receivers can be found in almost every modern mobile device. This research was conducted in order to determine the accuracies of different GPS receivers. The tests included seven consumer-grade tablets, three external GPS modules and one professional-grade GPS receiver. All of the devices were tested with both static and mobile measurements. It was concluded that even the cheaper external GPS receivers were notably more accurate than the GPS receivers of the tested tablets. The absolute accuracy of the tablets is difficult to determine from the test results, since the results vary by a large margin between different measurements. The accuracy of the tested tablets in static measurements were between 0.30 meters and 13.75 meters.
Resumo:
In distributed energy production, permanent magnet synchronous generators (PMSG) are often connected to the grid via frequency converters, such as voltage source line converters. The price of the converter may constitute a large part of the costs of a generating set. Some of the permanent magnet synchronous generators with converters and traditional separately excited synchronous generators couldbe replaced by direct-on-line (DOL) non-controlled PMSGs. Small directly networkconnected generators are likely to have large markets in the area of distributed electric energy generation. Typical prime movers could be windmills, watermills and internal combustion engines. DOL PMSGs could also be applied in island networks, such as ships and oil platforms. Also various back-up power generating systems could be carried out with DOL PMSGs. The benefits would be a lower priceof the generating set and the robustness and easy use of the system. The performance of DOL PMSGs is analyzed. The electricity distribution companies have regulations that constrain the design of the generators being connected to the grid. The general guidelines and recommendations are applied in the analysis. By analyzing the results produced by the simulation model for the permanent magnet machine, the guidelines for efficient damper winding parameters for DOL PMSGs are presented. The simulation model is used to simulate grid connections and load transients. The damper winding parameters are calculated by the finite element method (FEM) and determined from experimental measurements. Three-dimensional finite element analysis (3D FEA) is carried out. The results from the simulation model and 3D FEA are compared with practical measurements from two prototype axial flux permanent magnet generators provided with damper windings. The dimensioning of the damper winding parameters is case specific. The damper winding should be dimensioned based on the moment of inertia of the generating set. It is shown that the damper winding has optimal values to reach synchronous operation in the shortest period of time after transient operation. With optimal dimensioning, interferenceon the grid is minimized.
Resumo:
The objective of this study is to show that bone strains due to dynamic mechanical loading during physical activity can be analysed using the flexible multibody simulation approach. Strains within the bone tissue play a major role in bone (re)modeling. Based on previous studies, it has been shown that dynamic loading seems to be more important for bone (re)modeling than static loading. The finite element method has been used previously to assess bone strains. However, the finite element method may be limited to static analysis of bone strains due to the expensive computation required for dynamic analysis, especially for a biomechanical system consisting of several bodies. Further, in vivo implementation of strain gauges on the surfaces of bone has been used previously in order to quantify the mechanical loading environment of the skeleton. However, in vivo strain measurement requires invasive methodology, which is challenging and limited to certain regions of superficial bones only, such as the anterior surface of the tibia. In this study, an alternative numerical approach to analyzing in vivo strains, based on the flexible multibody simulation approach, is proposed. In order to investigate the reliability of the proposed approach, three 3-dimensional musculoskeletal models where the right tibia is assumed to be flexible, are used as demonstration examples. The models are employed in a forward dynamics simulation in order to predict the tibial strains during walking on a level exercise. The flexible tibial model is developed using the actual geometry of the subject’s tibia, which is obtained from 3 dimensional reconstruction of Magnetic Resonance Images. Inverse dynamics simulation based on motion capture data obtained from walking at a constant velocity is used to calculate the desired contraction trajectory for each muscle. In the forward dynamics simulation, a proportional derivative servo controller is used to calculate each muscle force required to reproduce the motion, based on the desired muscle contraction trajectory obtained from the inverse dynamics simulation. Experimental measurements are used to verify the models and check the accuracy of the models in replicating the realistic mechanical loading environment measured from the walking test. The predicted strain results by the models show consistency with literature-based in vivo strain measurements. In conclusion, the non-invasive flexible multibody simulation approach may be used as a surrogate for experimental bone strain measurement, and thus be of use in detailed strain estimation of bones in different applications. Consequently, the information obtained from the present approach might be useful in clinical applications, including optimizing implant design and devising exercises to prevent bone fragility, accelerate fracture healing and reduce osteoporotic bone loss.
Resumo:
A rotating machine usually consists of a rotor and bearings that supports it. The nonidealities in these components may excite vibration of the rotating system. The uncontrolled vibrations may lead to excessive wearing of the components of the rotating machine or reduce the process quality. Vibrations may be harmful even when amplitudes are seemingly low, as is usually the case in superharmonic vibration that takes place below the first critical speed of the rotating machine. Superharmonic vibration is excited when the rotational velocity of the machine is a fraction of the natural frequency of the system. In such a situation, a part of the machine’s rotational energy is transformed into vibration energy. The amount of vibration energy should be minimised in the design of rotating machines. The superharmonic vibration phenomena can be studied by analysing the coupled rotor-bearing system employing a multibody simulation approach. This research is focused on the modelling of hydrodynamic journal bearings and rotorbearing systems supported by journal bearings. In particular, the non-idealities affecting the rotor-bearing system and their effect on the superharmonic vibration of the rotating system are analysed. A comparison of computationally efficient journal bearing models is carried out in order to validate one model for further development. The selected bearing model is improved in order to take the waviness of the shaft journal into account. The improved model is implemented and analyzed in a multibody simulation code. A rotor-bearing system that consists of a flexible tube roll, two journal bearings and a supporting structure is analysed employing the multibody simulation technique. The modelled non-idealities are the shell thickness variation in the tube roll and the waviness of the shaft journal in the bearing assembly. Both modelled non-idealities may cause subharmonic resonance in the system. In multibody simulation, the coupled effect of the non-idealities can be captured in the analysis. Additionally one non-ideality is presented that does not excite the vibrations itself but affects the response of the rotorbearing system, namely the waviness of the bearing bushing which is the non-rotating part of the bearing system. The modelled system is verified with measurements performed on a test rig. In the measurements the waviness of bearing bushing was not measured and therefore it’s affect on the response was not verified. In conclusion, the selected modelling approach is an appropriate method when analysing the response of the rotor-bearing system. When comparing the simulated results to the measured ones, the overall agreement between the results is concluded to be good.
Resumo:
The development of load-bearing osseous implant with desired mechanical and surface properties in order to promote incorporation with bone and to eliminate risk of bone resorption and implant failure is a very challenging task. Bone formation and resoption processes depend on the mechanical environment. Certain stress/strain conditions are required to promote new bone growth and to prevent bone mass loss. Conventional metallic implants with high stiffness carry most of the load and the surrounding bone becomes virtually unloaded and inactive. Fibre-reinforced composites offer an interesting alternative to metallic implants, because their mechanical properties can be tailored to be equal to those of bone, by the careful selection of matrix polymer, type of fibres, fibre volume fraction, orientation and length. Successful load transfer at bone-implant interface requires proper fixation between the bone and implant. One promising method to promote fixation is to prepare implants with porous surface. Bone ingrowth into porous surface structure stabilises the system and improves clinical success of the implant. The experimental part of this work was focused on polymethyl methacrylate (PMMA) -based composites with dense load-bearing core and porous surface. Three-dimensionally randomly orientated chopped glass fibres were used to reinforce the composite. A method to fabricate those composites was developed by a solvent treatment technique and some characterisations concerning the functionality of the surface structure were made in vitro and in vivo. Scanning electron microscope observations revealed that the pore size and interconnective porous architecture of the surface layer of the fibre-reinforced composite (FRC) could be optimal for bone ingrowth. Microhardness measurements showed that the solvent treatment did not have an effect on the mechanical properties of the load-bearing core. A push-out test, using dental stone as a bone model material, revealed that short glass fibre-reinforced porous surface layer is strong enough to carry load. Unreacted monomers can cause the chemical necrosis of the tissue, but the levels of leachable resisidual monomers were considerably lower than those found in chemically cured fibre-reinforced dentures and in modified acrylic bone cements. Animal experiments proved that surface porous FRC implant can enhance fixation between bone and FRC. New bone ingrowth into the pores was detected and strong interlocking between bone and the implant was achieved.
Resumo:
Teaching the measurement of blood pressure for both nursing and public health nursing students The purpose of this two-phase study was to develop the teaching of blood pressure measurement within the nursing degree programmes of the Universities of Applied Sciences. The first survey phase described what and how blood pressure measurement was taught within nursing degree programmes. The second intervention phase (2004-2005) evaluated first academic year nursing and public health nursing students’ knowledge and skills results for blood pressure measurement. Additionally, the effect on the Taitoviikko experimental group students’ blood pressure measurement knowledge and skills level. A further objective was to construct models for an instrument (RRmittTest) to evaluate nursing students measurement of blood pressure (2003-2009). The research data for the survey phase were collected from teachers (total sampling, N=107, response rate 77%) using a specially developed RRmittopetus-questionnaire. Quasi-experimental study data on the RRmittTest-instrument was collected from students (purposive sampling, experimental group, n=29, control group, n=44). The RRmittTest consisted of a test of knowledge (Tietotesti) and simulation-based test (TaitoSimkäsi and Taitovideo) of skills. Measurements were made immediately after the teaching and in clinical practice. Statistical methods were used to analyse the results and responses to open-ended questions were organised and classified. Due to the small amount of materials involved and the results of distribution tests of the variables, non-parametric analytic methods were mainly used. Experimental group and control group similar knowledge and skills teaching was based on the results of the national survey phase (RRmittopetus) questionnaire results. Experimental group teaching includes the supervised Taitoviikko teaching method. During Taitoviikko students studied blood pressure measurement at the municipal hospital in a real nursing environment, guided by a teacher and a clinical nursing professional. In order to evaluate both learning and teaching the processes and components of blood pressure measurement were clearly defined as follows: the reliability of measurement instruments, activities preceding blood pressure measurement, technical execution of the measurement, recording, lifestyle guidance and measurement at home (self-monitoring). According to the survey study, blood pressure measurement is most often taught at Universities of Applied Sciences, separately, as knowledge (teaching of theory, 2 hours) and skills (classroom practice, 4 hours). The teaching was implemented largely in a classroom and was based mainly on a textbook. In the intervention phase the students had good knowledge of blood pressure measurement. However, their blood pressure measurement skills were deficient and the control group students, in particular, were highly deficient. Following in clinical practice the experimental group and control group students’ blood pressure measurement recording knowledge improve and experimental groups declined lifestyle guidance. Skills did not improve within any of the components analysed. The control groups` skills on the whole, declined statistically.There was a significant decline amongst the experimental group although only in one component measured. The results describe the learning results for first academic year students and no parallel conclusions should be drawn when considering any learning results for graduating students. The results support the use and further development of the Taitoviiko teaching method. The RRmittTest developed for the study should be assessed and the results seen from a negative perspective. This evaluation tool needs to be developed and retested.
Resumo:
Resonance energy transfer (RET) is a non-radiative transfer of the excitation energy from the initially excited luminescent donor to an acceptor. The requirements for the resonance energy transfer are: i) the spectral overlap between the donor emission spectrum and the acceptor absorption spectrum, ii) the close proximity of the donor and the acceptor, and iii) the suitable relative orientations of the donor emission and the acceptor absorption transition dipoles. As a result of the RET process the donor luminescence intensity and the donor lifetime are decreased. If the acceptor is luminescent, a sensitized acceptor emission appears. The rate of RET depends strongly on the donor–acceptor distance (r) and is inversely proportional to r6. The distance dependence of RET is utilized in binding assays. The proximity requirement and the selective detection of the RET-modified emission signal allow homogeneous separation free assays. The term lanthanide-based RET is used when luminescent lanthanide compounds are used as donors. The long luminescence lifetimes, the large Stokes’ shifts and the intense, sharply-spiked emission spectra of the lanthanide donors offer advantages over the conventional organic donor molecules. Both the organic lanthanide chelates and the inorganic up-converting phosphor (UCP) particles have been used as donor labels in the RET based binding assays. In the present work lanthanide luminescence and lanthanide-based resonance energy transfer phenomena were studied. Luminescence lifetime measurements had an essential role in the research. Modular frequency-domain and time-domain luminometers were assembled and used successfully in the lifetime measurements. The frequency-domain luminometer operated in the low frequency domain ( 100 kHz) and utilized a novel dual-phase lock-in detection of the luminescence. One of the studied phenomena was the recently discovered non-overlapping fluorescence resonance energy transfer (nFRET). The studied properties were the distance and temperature dependences of nFRET. The distance dependence was found to deviate from the Förster theory and a clear temperature dependence was observed whereas conventional RET was completely independent of the temperature. Based on the experimental results two thermally activated mechanisms were proposed for the nFRET process. The work with the UCP particles involved the measurement of the luminescence properties of the UCP particles synthesized in our laboratory. The goal of the UCP particle research is to develop UCP donor labels for binding assays. In the present work the effect of the dopant concentrations and the core–shell structure on the total up-conversion luminescence intensity, the red–green emission ratio, and the luminescence lifetime was studied. Also the non-radiative nature of the energy transfer from the UCP particle donors to organic acceptors was demonstrated for the first time in aqueous environment and with a controlled donor–acceptor distance.
Resumo:
This thesis addresses the use of covariant phase space observables in quantum tomography. Necessary and sufficient conditions for the informational completeness of covariant phase space observables are proved, and some state reconstruction formulae are derived. Different measurement schemes for measuring phase space observables are considered. Special emphasis is given to the quantum optical eight-port homodyne detection scheme and, in particular, on the effect of non-unit detector efficiencies on the measured observable. It is shown that the informational completeness of the observable does not depend on the efficiencies. As a related problem, the possibility of reconstructing the position and momentum distributions from the marginal statistics of a phase space observable is considered. It is shown that informational completeness for the phase space observable is neither necessary nor sufficient for this procedure. Two methods for determining the distributions from the marginal statistics are presented. Finally, two alternative methods for determining the state are considered. Some of their shortcomings when compared to the phase space method are discussed.
Resumo:
Bone strain plays a major role as the activation signal for the bone (re)modeling process, which is vital for keeping bones healthy. Maintaining high bone mineral density reduces the chances of fracture in the event of an accident. Numerous studies have shown that bones can be strengthened with physical exercise. Several hypotheses have asserted that a stronger osteogenic (bone producing) effect results from dynamic exercise than from static exercise. These previous studies are based on short-term empirical research, which provide the motivation for justifying the experimental results with a solid mathematical background. The computer simulation techniques utilized in this work allow for non-invasive bone strain estimation during physical activity at any bone site within the human skeleton. All models presented in the study are threedimensional and actuated by muscle models to replicate the real conditions accurately. The objective of this work is to determine and present loading-induced bone strain values resulting from physical activity. It includes a comparison of strain resulting from four different gym exercises (knee flexion, knee extension, leg press, and squat) and walking, with the results reported for walking and jogging obtained from in-vivo measurements described in the literature. The objective is realized primarily by carrying out flexible multibody dynamics computer simulations. The dissertation combines the knowledge of finite element analysis and multibody simulations with experimental data and information available from medical field literature. Measured subject-specific motion data was coupled with forward dynamics simulation to provide natural skeletal movement. Bone geometries were defined using a reverse engineering approach based on medical imaging techniques. Both computed tomography and magnetic resonance imaging were utilized to explore modeling differences. The predicted tibia bone strains during walking show good agreement with invivo studies found in the literature. Strain measurements were not available for gym exercises; therefore, the strain results could not be validated. However, the values seem reasonable when compared to available walking and running invivo strain measurements. The results can be used for exercise equipment design aimed at strengthening the bones as well as the muscles during workout. Clinical applications in post fracture recovery exercising programs could also be the target. In addition, the methodology introduced in this study, can be applied to investigate the effect of weightlessness on astronauts, who often suffer bone loss after long time spent in the outer space.
Resumo:
The purpose of this study was to investigate the suitability of the Finnish Defence Forces’ NH90 helicopter for parachuting operations with the T-10 static line parachute system. The work was based on the Army Command’s need to compensate for the reduction in the outsourced flight hours for the military static line parachuting training. The aim of the research was to find out the procedures and limitations with which the NH90 IOC+ or FOC version helicopter could be used for static line parachutist training with the T-10B/MC1-1C parachutes. The research area was highly complicated and non-linear. Thus analytical methods could not be applied with sufficient confidence, even with present-day computing power. Therefore an empirical research method was selected, concentrating on flight testing supported with literature study and some calculated estimations. During three flights and 4.5 flight hours in Utti, Finland on 1720 September 2012, a total of 44 parachute drops were made. These consisted of 16 dummy drops and 28 paratrooper jumps. The test results showed that when equipped with the floor mounted PASI-1 anchor line, the deflector bar of the NHIndustries’ Parachuting Kit and Patria’s floor protection panels the Finnish NH90 variant could be safely used for T-10B/MC1-1C static line parachuting operations from the right cabin door at airspeed range of 5080 KIAS (90–150 km/h). The ceiling mounted anchor lines of the NHI’s Parachuting Kit were not usable with the T-10 system. This was due to the static lines’ unsafe behaviour in slipstream when connected to the cabin ceiling level. In conclusion, the NH90 helicopter can be used to meet the Army Command’s requirement for an additional platform for T-10 static line parachutist training. Material dropping, the effect of additional equipment and jumping from the rear ramp should be further studied.
Resumo:
The purpose of this study was to investigate the suitability of the Finnish Defence Forces’ NH90 helicopter for parachuting operations with the T-10 static line parachute system. The work was based on the Army Command’s need to compensate for the reduction in the outsourced flight hours for the military static line parachuting training. The aim of the research was to find out the procedures and limitations with which the NH90 IOC+ or FOC version helicopter could be used for static line parachutist training with the T- 10B/MC1-1C parachutes. The research area was highly complicated and non-linear. Thus analytical methods could not be applied with sufficient confidence, even with present-day computing power. Therefore an empirical research method was selected, concentrating on flight testing supported with literature study and some calculated estimations. During three flights and 4.5 flight hours in Utti, Finland on 17−20 September 2012, a total of 44 parachute drops were made. These consisted of 16 dummy drops and 28 paratrooper jumps. The test results showed that when equipped with the floor mounted PASI-1 anchor line, the deflector bar of the NHIndustries’ Parachuting Kit and Patria’s floor protection panels the Finnish NH90 variant could be safely used for T-10B/MC1-1C static line parachuting operations from the right cabin door at airspeed range of 50−80 KIAS (∼90–150 km/h). The ceiling mounted anchor lines of the NHI’s Parachuting Kit were not usable with the T-10 system. This was due to the static lines’ unsafe behaviour in slipstream when connected to the cabin ceiling level. In conclusion, the NH90 helicopter can be used to meet the Army Command’s requirement for an additional platform for T-10 static line parachutist training. Material dropping, the effect of additional equipment and jumping from the rear ramp should be further studied.
Resumo:
The purpose of this work is to obtain a better understanding of behaviour of possible ultrasound appliance on fluid media mixing. The research is done in the regard to Newtonian and non-Newtonian fluids. The process of ultrasound appliance on liquids is modelled in COMSOL Multiphysics software. The influence of ultrasound using is introduced as waveform equation. Turbulence modelling is fulfilled by the k-ε model in Newtonian fluid. The modeling of ultrasound assisted mixing in non-Newtonian fluids is based on the power law. To verify modelling results two practical methods are used: Particle Image Velocimetry and measurements of mixing time. Particle Image Velocimetry allows capturing of velocity flow field continuously and presents detailed depiction of liquid dynamics. The second way of verification is the comparison of mixing time of homogeneity. Experimentally achievement of mixing time is done by conductivity measurements. In modelling part mixing time is achieved by special module of COMSOL Multiphysics – the transport of diluted species. Both practical and modelling parts show similar radial mechanism of fluid flow under ultrasound appliance – from the horn tip fluid moves to the bottom and along the walls goes back. Velocity profiles are similar in modelling and experimental part in the case of Newtonian fluid. In the case of non-Newtonian fluid velocity profiles do not agree. The development track of ultrasound-assisted mixing modelling is presented in the thesis.