20 resultados para Multiple Antigen Peptide System
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
T cells are the key players in the development of type 1 diabetes (T1D), mediating autoimmune reactions leading to the destruction of insulin producing beta cells in the islets. We aimed to analyze the role of different T-cell subtypes in the autoimmunity and pathogenesis of T1D. The frequency of islet antigen-specific (GAD65-, proinsulin-, and insulin-specific) CD4+ T cells was investigated in vitro in T1D patients, at-risk individuals (diabetes-associated autoantibody positive), and in controls, using MHC class II tetramers. An overall higher frequency of CD4+ T-cells recognizing the GAD65 555−567 peptide was detected in at-risk individuals. In addition, increased CD4+ T-cell responses to the same GAD65 epitope displaying a memory phenotype were observed in at-risk and diabetic children, which demonstrate a previous encounter with the antigen in vivo. Avidity and phenotypic differences were also observed among CD4+ T-cell clones induced by distinct doses of GAD65 autoantigen. T-cell clones generated at the lowest peptide dose displayed the highest avidity and expressed more frequently the TCR Vβ5.1 chain than low-avidity T cells. These findings raise attention to the antigen dose when investigating the diversity of antigen-specific T cells. Furthermore, an increased regulatory response during the preclinical phase of T1D was also found in genetically at-risk children. Higher frequencies of regulatory T (Treg) cells (CD4+CD25high HLA-DR-/CD69-) and natural killer T (NKT) cells (CD161+Vbeta11+) were observed in children with multiple autoantibodies compared to autoantibody-negative controls. Taken together, these data showed increased frequency of islet-specific CD4+ T-cells, especially to the GAD65 555-567 epitope, and Treg and NKT cell upregulation in children at-risk for T1D, suggesting their importance in T1D pathogenesis
Resumo:
Background Multiple sclerosis (MS) is a demyelinating disease of the central nervous system, which mainly affects young adults. In Finland, approximately 2500 out of 6000 MS patients have relapsing MS and are treated with disease modifying drugs (DMD): interferon- β (INF-β-1a or INF-β-1b) and glatiramer acetate (GA). Depending on the used IFN-β preparation, 2 % to 40 % of patients develop neutralizing antibodies (NAbs), which abolish the biological effects of IFN-β, leading to reduced clinical and MRI detected efficacy. According to the Finnish Current Care Guidelines and European Federation of Neurological Societis (EFNS) guidelines, it is suggested tomeasure the presence of NAbs during the first 24 months of IFN-β therapy. Aims The aim of this thesis was to measure the bioactivity of IFN-β therapy by focusing on the induction of MxA protein (myxovirus resistance protein A) and its correlation to neutralizing antibodies (NAb). A new MxA EIA assay was set up to offer an easier and rapid method for MxA protein detection in clinical practice. In addition, the tolerability and safety of GA were evaluated in patients who haddiscontinued IFN-β therapy due to side effects and lack of efficacy. Results NAbs developed towards the end of 12 months of treatment, and binding antibodies were detectable before or parallel with them. The titer of NAb correlated negatively with the amount of MxA protein and the mean values of preinjection MxA levels never returned to true baseline in NAb negative patients, but tended to drop in the NAb positive group. The test results between MxA EIA and flow cytometric analysis showed significant correlation. GA reduced the relapse rate and was a safe and well-tolerated therapy in IFN-β-intolerant MS patients. Conclusions NAbs inhibit the induction of MxA protein, which can be used as a surrogate marker of the bioactivity of IFN-β therapy. Compared to flow cytometricanalysis and NAb assay, MxA-EIA seemed to be a sensitive and more practical method in clinical use to measure the actual bioactivity of IFN-β treatment, which is of value also from a cost-effective perspective.
Resumo:
The purpose of this work was to study the characteristics of the most commonly used filter aid materials and their influences on the design of proportioning, mixing, and feeding system for polishing filter family. Based on the literature survey and hands-on experience a system was designed with defined equipment and capital and operating costs. The system was designed to serve precoating and bodyfeeding applications and is easily extended to be used in multiple filter processes. Also a test procedure was carried out where influences of flux and filter cloths to accumulated cake were studied. Filter aid is needed in challenging conditions to improve filtration efficiency and cleaning, and thus extend the operating life of the filter media. Filter aid preparation and feeding system was designed for the use of two different filter aids; precoat and bodyfeed. Precoating is used before the filtration step initiates. If the solids in the filterable solution have a tendency to clog the filter bag easily, precoat is used on the filter bag to obtain better filtration efficiency and quality. Diatomite or perlite is usually used as a precoating substance. The intention is to create a uniform cake to the overall surface of the filter cloth, with predetermined thickness, 2 – 5 mm. This ensures that the clogging of the filter cloth is reduced and the filtration efficiency is increased. Bodyfeed is used if the solids in the filterable solution have a tendency to form a sticky impermeable filter cake. The cake properties are enhanced by maintaining the permeability of the accumulating cake by using the filter aid substance as bodyfeed during the filtration process.
Resumo:
This thesis was produced for the Technology Marketing unit at the Nokia Research Center. Technology marketing was a new function at Nokia Research Center, and needed an established framework with the capacity to take into account multiple aspects for measuring the team performance. Technology marketing functions had existed in other parts of Nokia, yet no single method had been agreed upon for measuring their performance. The purpose of this study was to develop a performance measurement system for Nokia Research Center Technology Marketing. The target was that Nokia Research Center Technology Marketing had a framework for separate metrics; including benchmarking for starting level and target values in the future planning (numeric values were kept confidential within the company). As a result of this research, the Balanced Scorecard model of Kaplan and Norton, was chosen for the performance measurement system for Nokia Research Center Technology Marketing. This research selected the indicators, which were utilized in the chosen performance measurement system. Furthermore, performance measurement system was defined to guide the Head of Marketing in managing Nokia Research Center Technology Marketing team. During the research process the team mission, vision, strategy and critical success factors were outlined.
Resumo:
Especially in global enterprises, key data is fragmented in multiple Enterprise Resource Planning (ERP) systems. Thus the data is inconsistent, fragmented and redundant across the various systems. Master Data Management (MDM) is a concept, which creates cross-references between customers, suppliers and business units, and enables corporate hierarchies and structures. The overall goal for MDM is the ability to create an enterprise-wide consistent data model, which enables analyzing and reporting customer and supplier data. The goal of the study was defining the properties and success factors of a master data system. The theoretical background was based on literature and the case consisted of enterprise specific needs and demands. The theoretical part presents the concept, background, and principles of MDM and then the phases of system planning and implementation project. Case consists of background, definition of as is situation, definition of project, evaluation criterions and concludes the key results of the thesis. In the end chapter Conclusions combines common principles with the results of the case. The case part ended up dividing important factors of the system in success factors, technical requirements and business benefits. To clarify the project and find funding for the project, business benefits have to be defined and the realization has to be monitored. The thesis found out six success factors for the MDM system: Well defined business case, data management and monitoring, data models and structures defined and maintained, customer and supplier data governance, delivery and quality, commitment, and continuous communication with business. Technical requirements emerged several times during the thesis and therefore those can’t be ignored in the project. Conclusions chapter goes through these factors on a general level. The success factors and technical requirements are related to the essentials of MDM: Governance, Action and Quality. This chapter could be used as guidance in a master data management project.
Resumo:
The underlying cause of many human autoimmune diseases is unknown, but several environmental factors are implicated in triggering the self-destructive immune reactions. Multiple Sclerosis (MS) is a chronic autoimmune disease of the central nervous system, potentially leading to persistent neurological deterioration. The cause of MS is not known, and apart from immunomodulatory treatments there is no cure. In the early phase of the disease, relapsing-remitting MS (RR-MS) is characterized by unpredictable exacerbations of the neurological symptoms called relapses, which can occur at different intervals ranging from 4 weeks to several years. Microbial infections are known to be able to trigger MS relapses, and the patients are instructed to avoid all factors that might increase the risk of infections and to properly use antibiotics as well as to take care of dental hygiene. Among those environmental factors which are known to increase susceptibility to infections, high ambient air inhalable particulate matter levels affect all people within a geographical region. During the period of interest in this thesis, the occurrence of MS relapses could be effectively reduced by injections of interferon, which has immunomodulatory and antiviral properties. In this thesis, ecological and epidemiological analyses were used to study the possible connection between MS relapse occurrence, population level viral infections and air quality factors, as well as the effects of interferon medication. Hospital archive data were collected retrospectively from 1986-2001, a period in time ranging from when interferon medication first became available until just before other disease-modifying MS therapies arrived on the market. The grouped data were studied with logistic regression and intervention analysis, and individual patient data with survival analysis. Interferons proved to be effective in the treatment of MS in this observational study, as the amount of MS exacerbations was lower during interferon use as compared to the time before interferon treatment. A statistically significant temporal relationship between MS relapses and inhalable particular matter (PM10) concentrations was found in this study, which implies that MS patients are affected by the exposure to PM10. Interferon probably protected against the effect of PM10, because a significant increase in the risk of exacerbations was only observed in MS patients without interferon medication following environmental exposure to population level specific viral infections and PM10. Apart from being antiviral, interferon could thus also attenuate the enhancement of immune reactions caused by ambient air PM10. The retrospective approach utilizing carefully constructed hospital records proved to be an economical and reliable source of MS disease information for statistical analyses.
Resumo:
One of the targets of the climate and energy package of the European Union is to increase the energy efficiency in order to achieve a 20 percent reduction in primary energy use compared with the projected level by 2020. The energy efficiency can be improved for example by increasing the rotational speed of large electrical drives, because this enables the elimination of gearboxes leading to a compact design with lower losses. The rotational speeds of traditional bearings, such as roller bearings, are limited by mechanical friction. Active magnetic bearings (AMBs), on the other hand, allow very high rotational speeds. Consequently, their use in large medium- and high-speed machines has rapidly increased. An active magnetic bearing rotor system is an inherently unstable, nonlinear multiple-input, multiple-output system. Model-based controller design of AMBs requires an accurate system model. Finite element modeling (FEM) together with the experimental modal analysis provides a very accurate model for the rotor, and a linearized model of the magneticactuators has proven to work well in normal conditions. However, the overall system may suffer from unmodeled dynamics, such as dynamics of foundation or shrink fits. This dynamics can be modeled by system identification. System identification can also be used for on-line diagnostics. In this study, broadband excitation signals are adopted to the identification of an active magnetic bearing rotor system. The broadband excitation enables faster frequency response function measurements when compared with the widely used stepped sine and swept sine excitations. Different broadband excitations are reviewed, and the random phase multisine excitation is chosen for further study. The measurement times using the multisine excitation and the stepped sine excitation are compared. An excitation signal design with an analysis of the harmonics produced by the nonlinear system is presented. The suitability of different frequency response function estimators for an AMB rotor system are also compared. Additionally, analytical modeling of an AMB rotor system, obtaining a parametric model from the nonparametric frequency response functions, and model updating are discussed in brief, as they are key elements in the modeling for a control design. Theoretical methods are tested with a laboratory test rig. The results conclude that an appropriately designed random phase multisine excitation is suitable for the identification of AMB rotor systems.
Resumo:
Object-oriented programming is a widely adopted paradigm for desktop software development. This paradigm partitions software into separate entities, objects, which consist of data and related procedures used to modify and inspect it. The paradigm has evolved during the last few decades to emphasize decoupling between object implementations, via means such as explicit interface inheritance and event-based implicit invocation. Inter-process communication (IPC) technologies allow applications to interact with each other. This enables making software distributed across multiple processes, resulting in a modular architecture with benefits in resource sharing, robustness, code reuse and security. The support for object-oriented programming concepts varies between IPC systems. This thesis is focused on the D-Bus system, which has recently gained a lot of users, but is still scantily researched. D-Bus has support for asynchronous remote procedure calls with return values and a content-based publish/subscribe event delivery mechanism. In this thesis, several patterns for method invocation in D-Bus and similar systems are compared. The patterns that simulate synchronous local calls are shown to be dangerous. Later, we present a state-caching proxy construct, which avoids the complexity of properly asynchronous calls for object inspection. The proxy and certain supplementary constructs are presented conceptually as generic object-oriented design patterns. The e ect of these patterns on non-functional qualities of software, such as complexity, performance and power consumption, is reasoned about based on the properties of the D-Bus system. The use of the patterns reduces complexity, but maintains the other qualities at a good level. Finally, we present currently existing means of specifying D-Bus object interfaces for the purposes of code and documentation generation. The interface description language used by the Telepathy modular IM/VoIP framework is found to be an useful extension of the basic D-Bus introspection format.
Resumo:
Neurofibromatosis type 1 (NF1) is an autosomal dominant cancer predisposition syndrome that affects about 1 in 3500 individuals worldwide. NF1 is caused by mutations in the NF1 gene that encodes the tumor suppressor protein neurofibromin, an inactivator of the Ras oncogene. The hallmarks of NF1 include pigmentary lesions of the skin, Lisch nodules of the iris and cutaneous neurofibromas. Cutaneous neurofibromas are benign tumors composed of all the cell types of normal peripheral nerve. The traditional view of neurofibroma development has been that cutaneous neurofibromas arise from the disruption of the small nerve tributaries of the skin and subsequent proliferation of the resident cells. The second hit mutation in the NF1 gene has been considered as a prerequisite for neurofibroma development. The second hit is detectable in a subpopulation of primary Schwann cells cultured from neurofibromas. This thesis challenges the traditional concept of neurofibroma development. The results show that cutaneous neurofibromas are intimately associated with hair follicular structures and contain multipotent precursor cells (NFPs), suggesting that neurofibromas may arise from the multipotent cells which reside in hair follicles. Furthermore, this study presents that neurofibroma-derived Schwann cells that harbor bi-allelic inactivation in the NF1 gene express HLA class II genes and may act as nonprofessional antigen presenting cells. The CD4- and FoxP3-positive cells detected in cutaneous neurofibromas suggest that these cells may represent regulatory T cells (Tregs) which interact with HLA II –positive cells and aid the tumor cells in hiding from the immune system and are thus mediators of immune tolerance. This thesis also investigated neurofibroma development in the oral cavity and the use of different biomarkers to characterize cellular differentiation in neurofibromas. The results revealed that oral neurofibromas are not rare, but they usually appear as solitary lesions contrary to multiple cutaneous neurofibromas and present high heterogeneity within and between tumors. The use of class III beta-tubulin as a marker for neuronal differentiation led to an unexpected finding showing that multiple cell types express class III beta-tubulin during mitosis. The increased understanding of the multipotency of tumor cells, cellular differentiation and ability to hide from immune system will aid in the development of future treatments. Specifically, targeting Tregs in NF1 patients could provide a novel therapeutic approach to interfere with the development of neurofibromas.
Resumo:
T helper (Th) cells are vital regulators of the adaptive immune system. When activated by presentation of cognate antigen, Th cells demonstrate capacity to differentiate into functionally distinct effector cell subsets. The Th2 subset is required for protection against extracellular parasites, such as helminths, but is also closely linked to pathogenesis of asthma and allergies. The intracellular molecular signal transduction pathways regulating T helper cell subset differentiation are still incompletely known. Moreover, great majority of studies regarding Th2 differentiation have been conducted with mice models, while studies with human cells have been fewer in comparison. The goal of this thesis was to characterize molecular mechanisms promoting the development of Th2 phenotype, focusing specifically on human umbilical cord blood T cells as an experimental model. These primary cells, activated and differentiated to Th2 cells in vitro, were investigated by complementary system-wide approaches, targeting levels of mRNA, proteins, and lipid molecules. Specifically, the results indicated IL4-regulated recruitment of nuclear protein, and described novel components of the Th2-promoting STAT6 enhanceosome complex. Furthermore, the development of the activated effector cell phenotype was found to correlate with remodeling of the cellular lipidome. These findings will hopefully advance the understanding of human Th2 cell lineage commitment and development of Th2-associated disease states.
Resumo:
Family businesses are among the longest-lived most prevalent institutions in the world and they are an important source of economic development and growth. Ownership is a key to the business life of the firm and also one main key in family business definition. There is only a little portfolio entrepreneurship or portfolio business research within family business context. The absence of empirical evidence on the long-term relationship between family ownership and portfolio development presents an important gap in the family business literature. This study deals with the family business ownership changes and the development of portfolios in the family business and it is positioned in to the conversation of family business, growth, ownership, management and strategy. This study contributes and expands the existing body of theory on family business and ownership. From the theoretical point of view this study combines insights from the fields of portfolio entrepreneurship, ownership, and family business and integrate them. This crossfertilization produces interesting empirical and theoretical findings that can constitute a basis for solid contributions to the understanding of ownership dynamics and portfolio entrepreneurship in family firms. The research strategy chosen for this study represents longitudinal, qualitative, hermeneutic, and deductive approaches.The empirical part of study is using a case study approach with embedded design, that is, multiple levels of analysis within a single study. The study consists of two cases and it begins with a pilot case which will form a preunderstanding on the phenomenon. Pilot case develops the methodology approach to build in the main case and the main case will deepen the understanding of the phenomenon. This study develops and tests a research method of family business portfolio development focusing on investigating how ownership changes are influencing to the family business structures over time. This study reveals the linkages between dimensions of ownership and how they give rise to portfolio business development within the context of the family business. The empirical results of the study suggest that family business ownership is dynamic and owners are using ownership as a tool for creating business portfolios.
Resumo:
The general trend towards increasing e ciency and energy density drives the industry to high-speed technologies. Active Magnetic Bearings (AMBs) are one of the technologies that allow contactless support of a rotating body. Theoretically, there are no limitations on the rotational speed. The absence of friction, low maintenance cost, micrometer precision, and programmable sti ness have made AMBs a viable choice for highdemanding applications. Along with the advances in power electronics, such as signi cantly improved reliability and cost, AMB systems have gained a wide adoption in the industry. The AMB system is a complex, open-loop unstable system with multiple inputs and outputs. For normal operation, such a system requires a feedback control. To meet the high demands for performance and robustness, model-based control techniques should be applied. These techniques require an accurate plant model description and uncertainty estimations. The advanced control methods require more e ort at the commissioning stage. In this work, a methodology is developed for an automatic commissioning of a subcritical, rigid gas blower machine. The commissioning process includes open-loop tuning of separate parts such as sensors and actuators. The next step is to apply a system identi cation procedure to obtain a model for the controller synthesis. Finally, a robust model-based controller is synthesized and experimentally evaluated in the full operating range of the system. The commissioning procedure is developed by applying only the system components available and a priori knowledge without any additional hardware. Thus, the work provides an intelligent system with a self-diagnostics feature and an automatic commissioning.
Resumo:
Asthma and allergy are common diseases and their prevalence is increasing. One of the hypotheses that explains this trend is exposure to inhalable chemicals such as traffi c-related air pollution. Epidemiological research supports this theory, as a correlation between environmental chemicals and allergic respiratory diseases has been found. In addition to ambient airborne particles, one may be exposed to engineered nanosized materials that are actively produced due to their favorable physico-chemical properties compared to their bulk size counterparts. On the cellular level, improper activity of T helper (Th) cells has been connected to allergic reactions. Th cells can differentiate into functionally different effector subsets, which are identifi ed according to their characteristic cytokine profi les resulting in specifi c ability to communicate with other cells. Th2 cells activate humoral immunity and stimulate eradication of extracellular pathogens. However, persistent predominance of Th2 cells is involved in a development of number of allergic diseases. The cytokine environment at the time of antigen recognition is the major factor determining the polarization of a naïve Th cell. Th2 cell differentiation is initiated by IL4, which signals via transcription factor STAT6. Although the importance of this pathway has been evaluated in the mouse studies, the signaling components involved have been largely unknown. The aim of this thesis was to identify molecules, which are under the control of IL4 and STAT6 in Th cells. This was done by using system-level analysis of STAT6 target genes at genome, mRNA and protein level resulting in identifi cation of various genes previously not connected to Th2 cell phenotype acquisition. In the study, STAT6-mediated primary and secondary target genes were dissection from each other and a detailed transcriptional kinetics of Th2 cell polarization of naïve human CD4+ T cells was collected. Integration of these data revealed the hierarchy of molecular events that mediates the differentiation towards Th2 cell phenotype. In addition, the results highlighted the importance of exploiting proteomics tools to complement the studies on STAT6 target genes identifi ed through transcriptional profi ling. In the last subproject, the effects of the exposure with ZnO and TiO2 nanoparticles was analyzed in Jurkat T cell line and in primary human monocyte-derived macrophages and dendritic cells to evaluate their toxicity and potential to cause infl ammation. Identifi cation of ZnO-derived gene expression showed that the same nanoparticles may elicit markedly distinctive responses in different cell types, thus underscoring the need for unbiased profi ling of target genes and pathways affected. The results gave additional proof that the cellular response to nanosized ZnO is due to leached Zn2+ ions. The approach used in ZnO and TiO2 nanoparticle study demonstrated the value of assessing nanoparticle responses through a toxicogenomics approach. The increased knowledge of Th2 cell signaling will hopefully reveal new therapeutic nodes and eventually improve our possibilities to prevent and tackle allergic infl ammatory diseases.
Resumo:
Multiple sclerosis (MS) is a chronic immune-mediated inflammatory disorder of the central nervous system. MS is the most common disabling central nervous system (CNS) disease of young adults in the Western world. In Finland, the prevalence of MS ranges between 1/1000 and 2/1000 in different areas. Fabry disease (FD) is a rare hereditary metabolic disease due to mutation in a single gene coding α-galactosidase A (alpha-gal A) enzyme. It leads to multi-organ pathology, including cerebrovascular disease. Currently there are 44 patients with diagnosed FD in Finland. Magnetic resonance imaging (MRI) is commonly used in the diagnostics and follow-up of these diseases. The disease activity can be demonstrated by occurrence of new or Gadolinium (Gd)-enhancing lesions in routine studies. Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) are advanced MR sequences which can reveal pathologies in brain regions which appear normal on conventional MR images in several CNS diseases. The main focus in this study was to reveal whether whole brain apparent diffusion coefficient (ADC) analysis can be used to demonstrate MS disease activity. MS patients were investigated before and after delivery and before and after initiation of diseasemodifying treatment (DMT). In FD, DTI was used to reveal possible microstructural alterations at early timepoints when excessive signs of cerebrovascular disease are not yet visible in conventional MR sequences. Our clinical and MRI findings at 1.5T indicated that post-partum activation of the disease is an early and common phenomenon amongst mothers with MS. MRI seems to be a more sensitive method for assessing MS disease activity than the recording of relapses. However, whole brain ADC histogram analysis is of limited value in the follow-up of inflammatory conditions in a pregnancy-related setting because the pregnancy-related physiological effects on ADC overwhelm the alterations in ADC associated with MS pathology in brain tissue areas which appear normal on conventional MRI sequences. DTI reveals signs of microstructural damage in brain white matter of FD patients before excessive white matter lesion load can be observed on conventional MR scans. DTI could offer a valuable tool for monitoring the possible effects of enzyme replacement therapy in FD.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014