12 resultados para Mount Auburn Cemetery (Watertown and Cambridge, Mass.)
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
A rigorous unit operation model is developed for vapor membrane separation. The new model is able to describe temperature, pressure, and concentration dependent permeation as wellreal fluid effects in vapor and gas separation with hydrocarbon selective rubbery polymeric membranes. The permeation through the membrane is described by a separate treatment of sorption and diffusion within the membrane. The chemical engineering thermodynamics is used to describe the equilibrium sorption of vapors and gases in rubbery membranes with equation of state models for polymeric systems. Also a new modification of the UNIFAC model is proposed for this purpose. Various thermodynamic models are extensively compared in order to verify the models' ability to predict and correlate experimental vapor-liquid equilibrium data. The penetrant transport through the selective layer of the membrane is described with the generalized Maxwell-Stefan equations, which are able to account for thebulk flux contribution as well as the diffusive coupling effect. A method is described to compute and correlate binary penetrant¿membrane diffusion coefficients from the experimental permeability coefficients at different temperatures and pressures. A fluid flow model for spiral-wound modules is derived from the conservation equation of mass, momentum, and energy. The conservation equations are presented in a discretized form by using the control volume approach. A combination of the permeation model and the fluid flow model yields the desired rigorous model for vapor membrane separation. The model is implemented into an inhouse process simulator and so vapor membrane separation may be evaluated as an integralpart of a process flowsheet.
Resumo:
Diplomityön tavoitteena on tutkia mitä uusia tiedonhallinnallisia ongelmia ilmenee, kun massaräätälöidyn tuotteen tuotetieto hallitaan läpi tuotteen elinkaaren, sekä miten nämä ongelmat voitaisiin ratkaista. Ongelmat ja haasteet kerätään kirjallisuuslähteistä ja massaräätälöintiprosessi yhdistetään PLM-vaiheisiin. Ratkaisua tutkitaan testaamalla kuinka standardit STEP ja PLCS sekä standardeja tukeva PLM järjestelmä voisivat tukea massaräätälöidyn tuotteen elinkaaren tiedonhallintaa. MC tuotteiden ongelmia ovat tuoterakenteen monimutkaisuus, jäljitettävyys ja muutosten hallinta läpi elinkaaren. STEP ja PLCS pystyvät kummatkin tahollaan tukemaan tiedonhallintaa. MC-tuotteen geneerinen tuoterakenne on kuitenkin manuaalisesti liittettävä elinkaaritiedon tukemiseen. PLM-järjestelmä pystyy tukemaan MC-tuotteiden elinkaarta, mutta koska toiminto ei ole järjestelmään sisäänrakennettuna, MC-tuotteiden tukemisen parantamisessa on edelleen haasteita.
Resumo:
Small centrifugal compressors are more and more widely used in many industrialsystems because of their higher efficiency and better off-design performance comparing to piston and scroll compressors as while as higher work coefficient perstage than in axial compressors. Higher efficiency is always the aim of the designer of compressors. In the present work, the influence of four partsof a small centrifugal compressor that compresses heavy molecular weight real gas has been investigated in order to achieve higher efficiency. Two parts concern the impeller: tip clearance and the circumferential position of the splitter blade. The other two parts concern the diffuser: the pinch shape and vane shape. Computational fluid dynamics is applied in this study. The Reynolds averaged Navier-Stokes flow solver Finflo is used. The quasi-steady approach is utilized. Chien's k-e turbulence model is used to model the turbulence. A new practical real gas model is presented in this study. The real gas model is easily generated, accuracy controllable and fairly fast. The numerical results and measurements show good agreement. The influence of tip clearance on the performance of a small compressor is obvious. The pressure ratio and efficiency are decreased as the size of tip clearance is increased, while the total enthalpy rise keeps almost constant. The decrement of the pressure ratio and efficiency is larger at higher mass flow rates and smaller at lower mass flow rates. The flow angles at the inlet and outlet of the impeller are increased as the size of tip clearance is increased. The results of the detailed flow field show that leakingflow is the main reason for the performance drop. The secondary flow region becomes larger as the size of tip clearance is increased and the area of the main flow is compressed. The flow uniformity is then decreased. A detailed study shows that the leaking flow rate is higher near the exit of the impeller than that near the inlet of the impeller. Based on this phenomenon, a new partiallyshrouded impeller is used. The impeller is shrouded near the exit of the impeller. The results show that the flow field near the exit of the impeller is greatly changed by the partially shrouded impeller, and better performance is achievedthan with the unshrouded impeller. The loading distribution on the impeller blade and the flow fields in the impeller is changed by moving the splitter of the impeller in circumferential direction. Moving the splitter slightly to the suction side of the long blade can improve the performance of the compressor. The total enthalpy rise is reduced if only the leading edge of the splitter ismoved to the suction side of the long blade. The performance of the compressor is decreased if the blade is bended from the radius direction at the leading edge of the splitter. The total pressure rise and the enthalpy rise of thecompressor are increased if pinch is used at the diffuser inlet. Among the fivedifferent pinch shape configurations, at design and lower mass flow rates the efficiency of a straight line pinch is the highest, while at higher mass flow rate, the efficiency of a concave pinch is the highest. The sharp corner of the pinch is the main reason for the decrease of efficiency and should be avoided. The variation of the flow angles entering the diffuser in spanwise direction is decreased if pinch is applied. A three-dimensional low solidity twisted vaned diffuser is designed to match the flow angles entering the diffuser. The numerical results show that the pressure recovery in the twisted diffuser is higher than in a conventional low solidity vaned diffuser, which also leads to higher efficiency of the twisted diffuser. Investigation of the detailed flow fields shows that the separation at lower mass flow rate in the twisted diffuser is later than in the conventional low solidity vaned diffuser, which leads to a possible wider flow range of the twisted diffuser.
Resumo:
The market place of the twenty-first century will demand that manufacturing assumes a crucial role in a new competitive field. Two potential resources in the area of manufacturing are advanced manufacturing technology (AMT) and empowered employees. Surveys in Finland have shown the need to invest in the new AMT in the Finnish sheet metal industry in the 1990's. In this run the focus has been on hard technology and less attention is paid to the utilization of human resources. In manymanufacturing companies an appreciable portion of the profit within reach is wasted due to poor quality of planning and workmanship. The production flow production error distribution of the sheet metal part based constructions is inspectedin this thesis. The objective of the thesis is to analyze the origins of production errors in the production flow of sheet metal based constructions. Also the employee empowerment is investigated in theory and the meaning of the employee empowerment in reducing the overall production error amount is discussed in this thesis. This study is most relevant to the sheet metal part fabricating industrywhich produces sheet metal part based constructions for electronics and telecommunication industry. This study concentrates on the manufacturing function of a company and is based on a field study carried out in five Finnish case factories. In each studied case factory the most delicate work phases for production errors were detected. It can be assumed that most of the production errors are caused in manually operated work phases and in mass production work phases. However, no common theme in collected production error data for production error distribution in the production flow can be found. Most important finding was still that most of the production errors in each case factory studied belong to the 'human activity based errors-category'. This result indicates that most of the problemsin the production flow are related to employees or work organization. Development activities must therefore be focused to the development of employee skills orto the development of work organization. Employee empowerment gives the right tools and methods to achieve this.
Resumo:
Aims: The aims were to create clinically feasible reference intervals for thyroidstimulating hormone (TSH) and free thyroxine (FT4) and to analyze associations between thyroid function and self-rated health, neuropsychiatric symptoms, depression and dementia in the elderly. The second aim was also to establish reference intervals for sex hormones and to analyze associations between sex hormone levels and self-rated health, symptoms, depression and dementia in elderly men. Subjects and methods: The study population comprised 1252 subjects aged 65 years or over, living in the municipality of Lieto, south-western Finland. Self-rated health, life satisfaction, symptoms, depression, and dementia were assessed with specific questions, clinical examination and tools such as the Zung Self-report Depression Scale and the Mini-Mental State Examination. Independent variables were dichotomized, and associations of these variables with TSH, FT4 or sex hormone levels were assessed. Levels of TSH and FT4 in thyroid disease–free women and women treated with thyroxine were also compared. Results: Elevated concentrations of thyroid peroxidase antibodies (TPOAb) or thyroglobulin antibodies (TgAb) were found to have a marked effect on the upper reference limit for TSH among women, who were thyroid antibody positive more higher than suggested in several recent guidelines. After age adjustment, there were no associations between TSH levels and self-rated health, life satisfaction, or most neuropsychiatric symptoms in the thyroid disease-free population. Although women with thyroxine treatment for primary hypothyroidism had far higher TSH levels than thyroid disease-free women, there were no differences between thyroid-disease free women and women with stable thyroxine treatment regarding self-rated health, life satisfaction or symptoms. Age had a significant positive association with luteinizing hormone (LH), follicle 2 practice, one range in men aged 65 years or over can be used for T, E2 and FSH measured with the AutoDelfia method, but two separate reference intervals should be used for fT, LH and SHBG. After adjustment for age, higher levels of T and fT were associated with better self-rated health (SRH) in the reference population. After adjustment for age and body mass index (BMI), there were no associations between sex hormone concentrations and self-rated health, life satisfaction or most symptoms in concentration. Conclusion: Age-specific reference intervals were derived for thyroid function and sex hormones based on comprehensive data from a community-dwelling population with a high participation rate. The results do not support the need to decrease the upper reference limit for TSH or to lower the optimal TSH target in levothyroxine treatment in older adults, as recommended in recent guidelines. Older age or being overweight symptoms among elderly men. The associations of single symptoms with T levels were inconsistent among elderly men, although the association of low T level with diagnosed depression might be clinically significant.
Resumo:
Kirjallisuusarvostelu
Resumo:
Työn tavoitteena oli tutkia The Switch Drive Systems Oy:n edellytyksiä globaalille hankintatoiminnalle ja tuotannon aloittamiselle Kiinassa. Lisäksi pyrittiin keräämään empiiristä tietoa ja palautetta yrityksen prosesseista niiden kehittämistä varten. Yrityksen tuotantostrategia perustuu mallitehdaskonseptiin ja yrityksellä on kaksi mallitehdasta Suomessa. Työ keskittyy tutkimaan näiden mallitehtaiden valmiuksia aloittaa globaali ja ulkoistettu sarjatuotanto. Tutkimus suoritettiin empiirisenä tutkimuksena haastattelemalla yhteensä yhdeksää edustajaa yrityksen kolmesta yksiköstä Suomessa. Empiirinen tutkimus perustui riskienhallinnan keinoihin. Kvantitatiivisen tutkimuksen tarkoituksena oli kartoittaa merkittävimmät riskit tarkempaa tarkastelua varten. Kvalitatiivisen tutkimuksen tavoitteena oli löytää syitä merkittävimmille riskeille. Tutkimuksen keskeisimmäksi tulokseksi on saatu lista merkittävimmistä syistä, jotka vaikeuttavat yrityksen tuotantostrategian toteuttamista. Lisäksi tuloksia ovat kvantitatiiviset tulokset merkittävimmistä riskeistä ja niihin liittyvät syyseuraussuhteet.
Resumo:
In older populations, fractures are common and the consequences of fractures may be serious both for an individual and for society. However, information is scarce about the incidence, predictors and consequences of fractures in population-based unselected cohorts including both men and women and a long follow-up. The objective of this study was to analyse the incidence and predictors of fractures as well as functional decline and excess mortality due to fractures, among 482 men and 695 women aged 65 or older in the municipality of Lieto, Finland from 1991 until 2002. In analyses, Poisson’s, Cox proportional Hazards and Cumulative Logistic regression models were used for the control of several confounding variables. During the 12-year follow-up with a total of 10 040 person-years (PY), 307 (26%) persons sustained altogether 425 fractures of which 77% were sustained by women. The total incidence of fractures was 53.4 per 1000 PY (95% confidence intervals [95% CI]: 47.9 - 59.5) in women and 24.9 per 1000 PY (95% CI: 20.4 - 30.4) in men. The incidence rates of fractures at any sites and hip fractures were associated with increasing age. No significant changes in the ageadjusted incidence rates of fractures were found in either gender during the 12-year follow-up. The predictors of fractures varied by gender. In multivariate analyses, reduced handgrip strength and body mass index (BMI) lower than 30 in women and a large number of depressive symptoms in men were independent predictors of fractures. A compression fracture in one or more thoracic or upper lumbar vertebras on chest radiography at baseline was associated with subsequent fractures in both genders. Lower body fractures independently predicted both short- (0-2 years) and long-term (up to 8 years) functional decline in mobility and activities of daily living (ADL) performance during the 8-year follow-up. Upper body fractures predicted decline in ADL performance during longterm follow-up. In the 12-year follow-up, hip fractures in men (Hazard Ratio [HR] 8.1, 95% CI: 4.4-14.9) and in women (HR 3.0, 95% CI: 1.9-4.9), and fractures at the proximal humerus in men (HR 5.4, 95% CI: 1.6-17.7) were independently associated with excess mortality. In addition, leisure time inactivity in physical exercise predicted independently both functional decline and excess mortality. Fractures are common among older people posing serious individual consequences. Further studies about the effectiveness of preventing falls and fractures as well as improving care and rehabilitation after fractures are needed.
Resumo:
Kirjallisuusarvostelu
Resumo:
The main objective of this research is to estimate and characterize heterogeneous mass transfer coefficients in bench- and pilot-scale fluidized bed processes by the means of computational fluid dynamics (CFD). A further objective is to benchmark the heterogeneous mass transfer coefficients predicted by fine-grid Eulerian CFD simulations against empirical data presented in the scientific literature. First, a fine-grid two-dimensional Eulerian CFD model with a solid and gas phase has been designed. The model is applied for transient two-dimensional simulations of char combustion in small-scale bubbling and turbulent fluidized beds. The same approach is used to simulate a novel fluidized bed energy conversion process developed for the carbon capture, chemical looping combustion operated with a gaseous fuel. In order to analyze the results of the CFD simulations, two one-dimensional fluidized bed models have been formulated. The single-phase and bubble-emulsion models were applied to derive the average gas-bed and interphase mass transfer coefficients, respectively. In the analysis, the effects of various fluidized bed operation parameters, such as fluidization, velocity, particle and bubble diameter, reactor size, and chemical kinetics, on the heterogeneous mass transfer coefficients in the lower fluidized bed are evaluated extensively. The analysis shows that the fine-grid Eulerian CFD model can predict the heterogeneous mass transfer coefficients quantitatively with acceptable accuracy. Qualitatively, the CFD-based research of fluidized bed process revealed several new scientific results, such as parametrical relationships. The huge variance of seven orders of magnitude within the bed Sherwood numbers presented in the literature could be explained by the change of controlling mechanisms in the overall heterogeneous mass transfer process with the varied process conditions. The research opens new process-specific insights into the reactive fluidized bed processes, such as a strong mass transfer control over heterogeneous reaction rate, a dominance of interphase mass transfer in the fine-particle fluidized beds and a strong chemical kinetic dependence of the average gas-bed mass transfer. The obtained mass transfer coefficients can be applied in fluidized bed models used for various engineering design, reactor scale-up and process research tasks, and they consequently provide an enhanced prediction accuracy of the performance of fluidized bed processes.
Resumo:
Thesis: A liquid-cooled, direct-drive, permanent-magnet, synchronous generator with helical, double-layer, non-overlapping windings formed from a copper conductor with a coaxial internal coolant conduit offers an excellent combination of attributes to reliably provide economic wind power for the coming generation of wind turbines with power ratings between 5 and 20MW. A generator based on the liquid-cooled architecture proposed here will be reliable and cost effective. Its smaller size and mass will reduce build, transport, and installation costs. Summary: Converting wind energy into electricity and transmitting it to an electrical power grid to supply consumers is a relatively new and rapidly developing method of electricity generation. In the most recent decade, the increase in wind energy’s share of overall energy production has been remarkable. Thousands of land-based and offshore wind turbines have been commissioned around the globe, and thousands more are being planned. The technologies have evolved rapidly and are continuing to evolve, and wind turbine sizes and power ratings are continually increasing. Many of the newer wind turbine designs feature drivetrains based on Direct-Drive, Permanent-Magnet, Synchronous Generators (DD-PMSGs). Being low-speed high-torque machines, the diameters of air-cooled DD-PMSGs become very large to generate higher levels of power. The largest direct-drive wind turbine generator in operation today, rated just below 8MW, is 12m in diameter and approximately 220 tonne. To generate higher powers, traditional DD-PMSGs would need to become extraordinarily large. A 15MW air-cooled direct-drive generator would be of colossal size and tremendous mass and no longer economically viable. One alternative to increasing diameter is instead to increase torque density. In a permanent magnet machine, this is best done by increasing the linear current density of the stator windings. However, greater linear current density results in more Joule heating, and the additional heat cannot be removed practically using a traditional air-cooling approach. Direct liquid cooling is more effective, and when applied directly to the stator windings, higher linear current densities can be sustained leading to substantial increases in torque density. The higher torque density, in turn, makes possible significant reductions in DD-PMSG size. Over the past five years, a multidisciplinary team of researchers has applied a holistic approach to explore the application of liquid cooling to permanent-magnet wind turbine generator design. The approach has considered wind energy markets and the economics of wind power, system reliability, electromagnetic behaviors and design, thermal design and performance, mechanical architecture and behaviors, and the performance modeling of installed wind turbines. This dissertation is based on seven publications that chronicle the work. The primary outcomes are the proposal of a novel generator architecture, a multidisciplinary set of analyses to predict the behaviors, and experimentation to demonstrate some of the key principles and validate the analyses. The proposed generator concept is a direct-drive, surface-magnet, synchronous generator with fractional-slot, duplex-helical, double-layer, non-overlapping windings formed from a copper conductor with a coaxial internal coolant conduit to accommodate liquid coolant flow. The novel liquid-cooling architecture is referred to as LC DD-PMSG. The first of the seven publications summarized in this dissertation discusses the technological and economic benefits and limitations of DD-PMSGs as applied to wind energy. The second publication addresses the long-term reliability of the proposed LC DD-PMSG design. Publication 3 examines the machine’s electromagnetic design, and Publication 4 introduces an optimization tool developed to quickly define basic machine parameters. The static and harmonic behaviors of the stator and rotor wheel structures are the subject of Publication 5. And finally, Publications 6 and 7 examine steady-state and transient thermal behaviors. There have been a number of ancillary concrete outcomes associated with the work including the following. X Intellectual Property (IP) for direct liquid cooling of stator windings via an embedded coaxial coolant conduit, IP for a lightweight wheel structure for lowspeed, high-torque electrical machinery, and IP for numerous other details of the LC DD-PMSG design X Analytical demonstrations of the equivalent reliability of the LC DD-PMSG; validated electromagnetic, thermal, structural, and dynamic prediction models; and an analytical demonstration of the superior partial load efficiency and annual energy output of an LC DD-PMSG design X A set of LC DD-PMSG design guidelines and an analytical tool to establish optimal geometries quickly and early on X Proposed 8 MW LC DD-PMSG concepts for both inner and outer rotor configurations Furthermore, three technologies introduced could be relevant across a broader spectrum of applications. 1) The cost optimization methodology developed as part of this work could be further improved to produce a simple tool to establish base geometries for various electromagnetic machine types. 2) The layered sheet-steel element construction technology used for the LC DD-PMSG stator and rotor wheel structures has potential for a wide range of applications. And finally, 3) the direct liquid-cooling technology could be beneficial in higher speed electromotive applications such as vehicular electric drives.