79 resultados para Model Bile Systems
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The advancement of science and technology makes it clear that no single perspective is any longer sufficient to describe the true nature of any phenomenon. That is why the interdisciplinary research is gaining more attention overtime. An excellent example of this type of research is natural computing which stands on the borderline between biology and computer science. The contribution of research done in natural computing is twofold: on one hand, it sheds light into how nature works and how it processes information and, on the other hand, it provides some guidelines on how to design bio-inspired technologies. The first direction in this thesis focuses on a nature-inspired process called gene assembly in ciliates. The second one studies reaction systems, as a modeling framework with its rationale built upon the biochemical interactions happening within a cell. The process of gene assembly in ciliates has attracted a lot of attention as a research topic in the past 15 years. Two main modelling frameworks have been initially proposed in the end of 1990s to capture ciliates’ gene assembly process, namely the intermolecular model and the intramolecular model. They were followed by other model proposals such as templatebased assembly and DNA rearrangement pathways recombination models. In this thesis we are interested in a variation of the intramolecular model called simple gene assembly model, which focuses on the simplest possible folds in the assembly process. We propose a new framework called directed overlap-inclusion (DOI) graphs to overcome the limitations that previously introduced models faced in capturing all the combinatorial details of the simple gene assembly process. We investigate a number of combinatorial properties of these graphs, including a necessary property in terms of forbidden induced subgraphs. We also introduce DOI graph-based rewriting rules that capture all the operations of the simple gene assembly model and prove that they are equivalent to the string-based formalization of the model. Reaction systems (RS) is another nature-inspired modeling framework that is studied in this thesis. Reaction systems’ rationale is based upon two main regulation mechanisms, facilitation and inhibition, which control the interactions between biochemical reactions. Reaction systems is a complementary modeling framework to traditional quantitative frameworks, focusing on explicit cause-effect relationships between reactions. The explicit formulation of facilitation and inhibition mechanisms behind reactions, as well as the focus on interactions between reactions (rather than dynamics of concentrations) makes their applicability potentially wide and useful beyond biological case studies. In this thesis, we construct a reaction system model corresponding to the heat shock response mechanism based on a novel concept of dominance graph that captures the competition on resources in the ODE model. We also introduce for RS various concepts inspired by biology, e.g., mass conservation, steady state, periodicity, etc., to do model checking of the reaction systems based models. We prove that the complexity of the decision problems related to these properties varies from P to NP- and coNP-complete to PSPACE-complete. We further focus on the mass conservation relation in an RS and introduce the conservation dependency graph to capture the relation between the species and also propose an algorithm to list the conserved sets of a given reaction system.
Resumo:
Yhtenäistetty mallinnuskieli, Unified Modeling Language (UML), on saavuttanut ohjelmistoteollisuudessa defacto standardin mallinnuskielen aseman. UML:n pääasiallinen käyttökohde on ollut ohjelmistojärjestelmien mallinnus, mutta sitä on sovellettu myös muillakin ongelma-alueilla, kuten erilaisten prosessien mallinnuksessa. Tässä diplomityössä mallinnetaan eräs betoniaseman ohjausjärjestelmä käyttäen UML:ää. Työssä perehdytään alan kirjallisuuden avulla siihen, miten teollisuus on hyödyntänyt UML:ää prosessien ohjausjärjestelmien mallinnuksessa. Kirjallisuudesta saatua tietoa sovelletaan betoniaseman ohjausjärjestelmän mallinnuksessa. Luotua mallia analysoidaan sen oikeellisuuden ja käytettävyyden perusteella. Työssä havaittiin, että UML soveltuu hyvin betoniaseman ohjausjärjestelmän kaltaisen teollisuusprosessin ohjauksen mallinnukseen. UML-mallilla voidaan kuvata järjestelmän rakenne ja toiminta kattavasti. Luotua mallia voidaan hyödyntää suoraan ohjausjärjestelmän jatkokehityksessä. Julkista tutkimustietoa aiheesta on kuitenkin niukasti saatavilla, joten lisätarve julkiselle tutkimukselle on olemassa.
Resumo:
Tämän diplomityön tavoitteena on tutkia kattilalaitosten järjestelmällistä suunnittelua, huomioiden laitoksen elinkaariprosessit ja modulaarinen tuoterakenne. Kattilalaitokset investointituotteina toteutetaan tyypillisesti projektitoimintamallilla, jolloin jokainen toimitus suunnitellaan alusta kyseisen kohteen vaatimusten perusteella. Päätöksenteon peruste on laitosasiakkaiden osalta tyypillisesti hinta, jonkavuoksi laitoksen perusratkaisut tulee olla ennalta määriteltyjä ja toimitusprosessi huolellisesti suunniteltu, jotta kustannukset ja aikataulu ovat ennustettavissa. Projektitoimituksissa projektipäälliköllä on merkittävä vastuu myös suunnittelun onnistumisesta ja käytössä olevat projektinhallintamallit ovat hyvin tuotekeskeisiä, jolloin vaatimuksia ei riittävästi huomioida ja siten toteutettu laitosratkaisu ei täytä usein sidosryhmien asettamia vaatimuksia. Monimutkaisten järjestelmien kehittämiseen ja suunnitteluun on olemassa Systems Engineering - suunnittelumalli, jonka hyödyntäminen energiatekniikan alalla on ollut vielä vähäistä. Malli tarjoaa yhdessä ISO/ICE 15288 standardin kanssa valmiit prosessit tuotteen järjestelmälliselle suunnittelulle. Modulaariset tuoterakenteet ovat olleet perusvaatimus komponenttien toimitusten osalta, mutta laitosjärjestelmien tuotteistaminen on koettu vaikeaksi runsaan räätälöintitarpeen takia. Prosessimaisella toimintamallilla voidaan tuottaa modulaarisia tuoterakenteita ja tehostaa kattilalaitosten muutosten hallintaa. Tutkimuksessa tunnistettiin tyypilliset kattilalaitoksen suunnittelun prosessit kattilalaitosten kokonaistoimituksiin erikoistuneelle KPA Unicon Oy:lle.
Resumo:
Nykyajan jatkuvasti kiristyvät päästörajoitukset ja ilmastonmuutoksen uhka ovat ajavia voimia kehittämään voimalaitosten tekniikkaa energiatehokkaampaan ja ympäristöystävällisempään suuntaan. Polttomoottoritekniikan parantaminen on tärkeä osa tätä kehitystä, mutta jo nykyisiä moottoreita voitaisiin ajaa energiate-hokkaammin käyttämällä akustoa ja älykästä säätöjärjestelmää apuna. Työssä tutkitaan simulaatioiden avulla voidaanko ulkomerellä toimivan huolto-aluksen energiatehokkuutta parantaa muokkaamalla sen tehon tuottoa keskitehoes-timaattorin ja akuston avulla.
Resumo:
Tämän diplomityön tavoitteina oli luoda suunnitelma ISO 9001 ja 14001 -sertifikaatteihin oikeuttavalle laadunhallintajärjestelmälle ja luoda malli projektiorganisaation toiminnan mittaamiselle ja kehittämiselle. Lisäksi työn tarkoituksena oli luoda teoreettinen osaamispohja projektipäällikölle laadunhallintajärjestelmäprojektin läpiviemisen tueksi. Työssä perehdyttiin laadunhallinnan periaatteisiin, tietojärjestelmäprojektikehityksen elinkaareen, tietojärjestelmäprojektien kriittisiin menestystekijöihin ja itsearviointimallin laatimisperiaatteisiin. Diplomityön kanssa lomittain suoritetulle laadunhallintajärjestelmäprojektille parhaiten sopivat käytännöt tunnistettiin kirjallisuudesta sekä puolistrukturoidulla haastattelulla Volvo Finland Ab:n johdon edustajille. Työssä luodun suunnitelman mukainen laadunhallintajärjestelmä toteutettiin Volvo Finland Ab:lle yhdessä nelikymmenhenkisen projektiorganisaation kanssa. Projektin aikana tehdyn aktiivisen, osallistuvan havainnoinnin ja diplomityössä luodun itsearviointimallin perusteella kartoitettiin projektiorganisaatiolle parhaiten sopivat toimintamenetelmät. Toimintamenetelmäkartoituksen tuloksena todettiin, että organisaation tietotaito on vertikaalista ja tästä syystä resurssienhallinta nostettiin kriittisimmäksi elementiksi projektien onnistumisen kannalta. Resurssienhallinnan tueksi ehdotettiin Stage-Gate-mallia projektien läpiviemiseen. Mallin avulla voitaisiin resurssit hallitusti kohdistaa uudelleen projektin joka vaiheessa.
Resumo:
A rotating machine usually consists of a rotor and bearings that supports it. The nonidealities in these components may excite vibration of the rotating system. The uncontrolled vibrations may lead to excessive wearing of the components of the rotating machine or reduce the process quality. Vibrations may be harmful even when amplitudes are seemingly low, as is usually the case in superharmonic vibration that takes place below the first critical speed of the rotating machine. Superharmonic vibration is excited when the rotational velocity of the machine is a fraction of the natural frequency of the system. In such a situation, a part of the machine’s rotational energy is transformed into vibration energy. The amount of vibration energy should be minimised in the design of rotating machines. The superharmonic vibration phenomena can be studied by analysing the coupled rotor-bearing system employing a multibody simulation approach. This research is focused on the modelling of hydrodynamic journal bearings and rotorbearing systems supported by journal bearings. In particular, the non-idealities affecting the rotor-bearing system and their effect on the superharmonic vibration of the rotating system are analysed. A comparison of computationally efficient journal bearing models is carried out in order to validate one model for further development. The selected bearing model is improved in order to take the waviness of the shaft journal into account. The improved model is implemented and analyzed in a multibody simulation code. A rotor-bearing system that consists of a flexible tube roll, two journal bearings and a supporting structure is analysed employing the multibody simulation technique. The modelled non-idealities are the shell thickness variation in the tube roll and the waviness of the shaft journal in the bearing assembly. Both modelled non-idealities may cause subharmonic resonance in the system. In multibody simulation, the coupled effect of the non-idealities can be captured in the analysis. Additionally one non-ideality is presented that does not excite the vibrations itself but affects the response of the rotorbearing system, namely the waviness of the bearing bushing which is the non-rotating part of the bearing system. The modelled system is verified with measurements performed on a test rig. In the measurements the waviness of bearing bushing was not measured and therefore it’s affect on the response was not verified. In conclusion, the selected modelling approach is an appropriate method when analysing the response of the rotor-bearing system. When comparing the simulated results to the measured ones, the overall agreement between the results is concluded to be good.
Resumo:
VTT Jouni Meriluodon valtio-opin alaan kuuluva väitöskirja Systems between information and knowledge : in a memory management model of an extended enterprise tarkastettiin 21.6.2011 Helsingin yliopistossa.
Resumo:
The three alpha2-adrenoceptor (alpha2-AR) subtypes belong to the G protein-coupled receptor superfamily and represent potential drug targets. These receptors have many vital physiological functions, but their actions are complex and often oppose each other. Current research is therefore driven towards discovering drugs that selectively interact with a specific subtype. Cell model systems can be used to evaluate a chemical compound's activity in complex biological systems. The aim of this thesis was to optimize and validate cell-based model systems and assays to investigate alpha2-ARs as drug targets. The use of immortalized cell lines as model systems is firmly established but poses several problems, since the protein of interest is expressed in a foreign environment, and thus essential components of receptor regulation or signaling cascades might be missing. Careful cell model validation is thus required; this was exemplified by three different approaches. In cells heterologously expressing alpha2A-ARs, it was noted that the transfection technique affected the test outcome; false negative adenylyl cyclase test results were produced unless a cell population expressing receptors in a homogenous fashion was used. Recombinant alpha2C-ARs in non-neuronal cells were retained inside the cells, and not expressed in the cell membrane, complicating investigation of this receptor subtype. Receptor expression enhancing proteins (REEPs) were found to be neuronalspecific adapter proteins that regulate the processing of the alpha2C-AR, resulting in an increased level of total receptor expression. Current trends call for the use of primary cells endogenously expressing the receptor of interest; therefore, primary human vascular smooth muscle cells (SMC) expressing alpha2-ARs were tested in a functional assay monitoring contractility with a myosin light chain phosphorylation assay. However, these cells were not compatible with this assay due to the loss of differentiation. A rat aortic SMC cell line transfected to express the human alpha2B-AR was adapted for the assay, and it was found that the alpha2-AR agonist, dexmedetomidine, evoked myosin light chain phosphorylation in this model.
Resumo:
Software is a key component in many of our devices and products that we use every day. Most customers demand not only that their devices should function as expected but also that the software should be of high quality, reliable, fault tolerant, efficient, etc. In short, it is not enough that a calculator gives the correct result of a calculation, we want the result instantly, in the right form, with minimal use of battery, etc. One of the key aspects for succeeding in today's industry is delivering high quality. In most software development projects, high-quality software is achieved by rigorous testing and good quality assurance practices. However, today, customers are asking for these high quality software products at an ever-increasing pace. This leaves the companies with less time for development. Software testing is an expensive activity, because it requires much manual work. Testing, debugging, and verification are estimated to consume 50 to 75 per cent of the total development cost of complex software projects. Further, the most expensive software defects are those which have to be fixed after the product is released. One of the main challenges in software development is reducing the associated cost and time of software testing without sacrificing the quality of the developed software. It is often not enough to only demonstrate that a piece of software is functioning correctly. Usually, many other aspects of the software, such as performance, security, scalability, usability, etc., need also to be verified. Testing these aspects of the software is traditionally referred to as nonfunctional testing. One of the major challenges with non-functional testing is that it is usually carried out at the end of the software development process when most of the functionality is implemented. This is due to the fact that non-functional aspects, such as performance or security, apply to the software as a whole. In this thesis, we study the use of model-based testing. We present approaches to automatically generate tests from behavioral models for solving some of these challenges. We show that model-based testing is not only applicable to functional testing but also to non-functional testing. In its simplest form, performance testing is performed by executing multiple test sequences at once while observing the software in terms of responsiveness and stability, rather than the output. The main contribution of the thesis is a coherent model-based testing approach for testing functional and performance related issues in software systems. We show how we go from system models, expressed in the Unified Modeling Language, to test cases and back to models again. The system requirements are traced throughout the entire testing process. Requirements traceability facilitates finding faults in the design and implementation of the software. In the research field of model-based testing, many new proposed approaches suffer from poor or the lack of tool support. Therefore, the second contribution of this thesis is proper tool support for the proposed approach that is integrated with leading industry tools. We o er independent tools, tools that are integrated with other industry leading tools, and complete tool-chains when necessary. Many model-based testing approaches proposed by the research community suffer from poor empirical validation in an industrial context. In order to demonstrate the applicability of our proposed approach, we apply our research to several systems, including industrial ones.
Resumo:
This study is based on a large survey study of over 1500 Finnish companies’ usage, needs and implementation difficulties of management accounting systems. The study uses quantitative, qualitative and mixed methods to answer the research questions. The empirical data used in the study was gathered through structured interviews with randomly selected companies of varying sizes and industries. The study answers the three research questions by analyzing the characteristics and behaviors of companies working in Finland. The study found five distinctive groups of companies according to the characteristics of their cost information and management accounting system use. The study also showed that the state of cost information and management accounting systems depends on the industry and size of the companies. It was found that over 50% of the companies either did not know how their systems could be updated or saw systems as inadequate. The qualitative side also highlighted the needs for tailored and integrated management accounting systems for creating more value to the managers of companies. The major inhibitors of new system implementation were the lack of both monetary and human resources. Through the use of mixed methods and design science a new and improved sophistication model is created based on previous research results combined with the information gathered from previous literature. The sophistication model shows the different stages of management accounting systems in use and what companies can achieve with the implementation and upgrading of their systems.
Resumo:
Tämä diplomityö käsittelee työkaluja, jotka on suunniteltu kustannusten ennakointiin ja hinnan asetantaan. Aluksi on käyty läpi perinteisen ja toimintoperusteisen kustannuslaskennan perusteita. Näiden menetelmien välisiä eroja on tarkasteltu ja toimintoperusteisen kustannuslaskennan paremmin sopivuus nykypäivän yrityksille on perusteltu. Toisena käsitellään hinnoittelu. Hinnan merkitys, hinnoittelumenetelmät ja päätös lopullisesta hinnasta on käyty läpi. Hinnoittelun jälkeen esitellään kustannusjärjestelmät ja kustannusten arviointi. Nämä asiat todistavat, että tarkat kustannusarviot ovat elintärkeitä yritykselle. Tuotteen kustannusarviointi, hinnan asetanta ja tarjoaminen ovat erittäin merkityksellisiä asioita ottaen huomioon koko projektin elinkaaren ja tulevat tuotot. Nykyään on yleistä käyttää työkaluja kustannusarvioinnissa ja joskus myös hinnoittelussa. Työkalujen luotettavuus on tiedettävä, ennenkuin työkalut otetaan käyttöön. Myös työkalujen käyttäjät täytyy perehdyttää hyvin. Muuten yritys todennäköisesti kohtaa odottamattomia ja epämiellyttäviä yllätyksiä.
Resumo:
The aim of `Valssi' study was to find out the service requirements in `business-to-business' (B2B) markets and to present a new logistics service concept, where the traditional logistics service is expanded with significant manufacturing and value addedfacilities. The traditional third-party logistics service providers are not necessarily able to offer services, which cover widely the needs of potential customers. The study has been outlined to spare part markets in metal industry. In the second phase of the Valssi-project the aim is to examine the economical conditions and potentiality of the new logistics business concept. This research report (Part 1) concentrates on examining current trends in global and domestic logistics markets. Based on detailed survey among the participating companies, the study presents basis for a new logistics business concept model. The developed concept consists of 12 different service modules, which are split into deeper details of processes. The integration of worldwide supplier and service provider network together with customer companies systems is a challenge. The report focuses on evaluating the requirements for the new business concept from the customer-companies point of view. The study paints an overall picture of distribution and service provider network including an abstract about the software and system integration possibilities. As a result of the survey, it can be concluded that thereis need for the new business concept among the participating companies, and a modular service concept meets the requirements of them, because the new sophisticated concept considers the specialities involved in spare part logistics in metal industry.
Resumo:
The present study was done with two different servo-systems. In the first system, a servo-hydraulic system was identified and then controlled by a fuzzy gainscheduling controller. The second servo-system, an electro-magnetic linear motor in suppressing the mechanical vibration and position tracking of a reference model are studied by using a neural network and an adaptive backstepping controller respectively. Followings are some descriptions of research methods. Electro Hydraulic Servo Systems (EHSS) are commonly used in industry. These kinds of systems are nonlinearin nature and their dynamic equations have several unknown parameters.System identification is a prerequisite to analysis of a dynamic system. One of the most promising novel evolutionary algorithms is the Differential Evolution (DE) for solving global optimization problems. In the study, the DE algorithm is proposed for handling nonlinear constraint functionswith boundary limits of variables to find the best parameters of a servo-hydraulic system with flexible load. The DE guarantees fast speed convergence and accurate solutions regardless the initial conditions of parameters. The control of hydraulic servo-systems has been the focus ofintense research over the past decades. These kinds of systems are nonlinear in nature and generally difficult to control. Since changing system parameters using the same gains will cause overshoot or even loss of system stability. The highly non-linear behaviour of these devices makes them ideal subjects for applying different types of sophisticated controllers. The study is concerned with a second order model reference to positioning control of a flexible load servo-hydraulic system using fuzzy gainscheduling. In the present research, to compensate the lack of dampingin a hydraulic system, an acceleration feedback was used. To compare the results, a pcontroller with feed-forward acceleration and different gains in extension and retraction is used. The design procedure for the controller and experimental results are discussed. The results suggest that using the fuzzy gain-scheduling controller decrease the error of position reference tracking. The second part of research was done on a PermanentMagnet Linear Synchronous Motor (PMLSM). In this study, a recurrent neural network compensator for suppressing mechanical vibration in PMLSM with a flexible load is studied. The linear motor is controlled by a conventional PI velocity controller, and the vibration of the flexible mechanism is suppressed by using a hybrid recurrent neural network. The differential evolution strategy and Kalman filter method are used to avoid the local minimum problem, and estimate the states of system respectively. The proposed control method is firstly designed by using non-linear simulation model built in Matlab Simulink and then implemented in practical test rig. The proposed method works satisfactorily and suppresses the vibration successfully. In the last part of research, a nonlinear load control method is developed and implemented for a PMLSM with a flexible load. The purpose of the controller is to track a flexible load to the desired position reference as fast as possible and without awkward oscillation. The control method is based on an adaptive backstepping algorithm whose stability is ensured by the Lyapunov stability theorem. The states of the system needed in the controller are estimated by using the Kalman filter. The proposed controller is implemented and tested in a linear motor test drive and responses are presented.
Resumo:
The aim of the study is to developa novel robust controller based on sliding mode control technique for the hydraulic servo system with flexible load and for a flexible manipulator with the lift and jib hydraulic actuators. For the purpose of general control design, a dynamic model is derived describing the principle physical behavior for both the hydraulic servo system and the flexible hydraulic manipulator. The mechanism of hydraulic servo systems is described by basic mathematical equations of fluid powersystems and the dynamics of flexible manipulator is modeled by the assumed modemethod. The controller is constructed so as to track desired trajectories in the presence of model imprecision. Experimental and simulation results demonstratethat sliding mode control has benefits which can be used to guarantee stabilityin uncertain systems and improve the system performance and load tolerance.
Resumo:
The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.