70 resultados para Machine-tools - numerical control
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
This thesis concentrates on studying the operational disturbance behavior of machine tools integrated into FMS. Operational disturbances are short term failures of machine tools which are especially disruptive to unattended or unmanned operation of FMS. The main objective was to examine the effect of operational disturbances on reliability and operation time distribution for machine tools. The theoretical part of the thesis covers the fimdamentals of FMS relating to the subject of this study. The concept of FMS, its benefits and operator's role in FMS operation are reviewed. The importance of reliability is presented. The terms describing the operation time of machine tools are formed by adopting standards and references. The concept of failure and indicators describing reliability and operational performance for machine tools in FMSs are presented. The empirical part of the thesis describes the research methodology which is a combination of automated (ADC) and manual data collection. By using this methodology it is possible to have a complete view of the operation time distribution for studied machine tools. Data collection was carried out in four FMSs consisting of a total of 17 machine tools. Each FMS's basic features and the signals of ADC are described. The indicators describing the reliability and operation time distribution of machine tools were calculated according to collected data. The results showed that operational disturbances have a significant influence on machine tool reliability and operational performance. On average, an operational disturbance occurs every 8,6 hours of operation time and has a down time of 0,53 hours. Operational disturbances cause a 9,4% loss in operation time which is twice the amount of losses caused by technical failures (4,3%). Operational disturbances have a decreasing influence on the utilization rate. A poor operational disturbance behavior decreases the utilization rate. It was found that the features of a part family to be machined and the method technology related to it are defining the operational disturbance behavior of the machine tool. Main causes for operational disturbances were related to material quality variations, tool maintenance, NC program errors, ATC and machine tool control. Operator's role was emphasized. It was found that failure recording activity of the operators correlates with the utilization rate. The more precisely the operators record the failure, the higher is the utilization rate. Also the FMS organizations which record failures more precisely have fewer operational disturbances.
Resumo:
Direct-driven permanent magnet synchronous generator is one of the most promising topologies for megawatt-range wind power applications. The rotational speed of the direct-driven generator is very low compared with the traditional electrical machines. The low rotational speed requires high torque to produce megawatt-range power. The special features of the direct-driven generators caused by the low speed and high torque are discussed in this doctoral thesis. Low speed and high torque set high demands on the torque quality. The cogging torque and the load torque ripple must be as low as possible to prevent mechanical failures. In this doctoral thesis, various methods to improve the torque quality are compared with each other. The rotor surface shaping, magnet skew, magnet shaping, and the asymmetrical placement of magnets and stator slots are studied not only by means of torque quality, but also the effects on the electromagnetic performance and manufacturability of the machine are discussed. The heat transfer of the direct-driven generator must be designed to handle the copper losses of the stator winding carrying high current density and to keep the temperature of the magnets low enough. The cooling system of the direct-driven generator applying the doubly radial air cooling with numerous radial cooling ducts was modeled with a lumped-parameter-based thermal network. The performance of the cooling system was discussed during the steady and transient states. The effect of the number and width of radial cooling ducts was explored. The large number of radial cooling ducts drastically increases the impact of the stack end area effects, because the stator stack consists of numerous substacks. The effects of the radial cooling ducts on the effective axial length of the machine were studied by analyzing the crosssection of the machine in the axial direction. The method to compensate the magnet end area leakage was considered. The effect of the cooling ducts and the stack end area effects on the no-load voltages and inductances of the machine were explored by using numerical analysis tools based on the three-dimensional finite element method. The electrical efficiency of the permanent magnet machine with different control methods was estimated analytically over the whole speed and torque range. The electrical efficiencies achieved with the most common control methods were compared with each other. The stator voltage increase caused by the armature reaction was analyzed. The effect of inductance saturation as a function of load current was implemented to the analytical efficiency calculation.
Resumo:
Industry's growing need for higher productivity is placing new demands on mechanisms connected with electrical motors, because these can easily lead to vibration problems due to fast dynamics. Furthermore, the nonlinear effects caused by a motor frequently reduce servo stability, which diminishes the controller's ability to predict and maintain speed. Hence, the flexibility of a mechanism and its control has become an important area of research. The basic approach in control system engineering is to assume that the mechanism connected to a motor is rigid, so that vibrations in the tool mechanism, reel, gripper or any apparatus connected to the motor are not taken into account. This might reduce the ability of the machine system to carry out its assignment and shorten the lifetime of the equipment. Nonetheless, it is usually more important to know how the mechanism, or in other words the load on the motor, behaves. A nonlinear load control method for a permanent magnet linear synchronous motor is developed and implemented in the thesis. The purpose of the controller is to track a flexible load to the desired velocity reference as fast as possible and without awkward oscillations. The control method is based on an adaptive backstepping algorithm with its stability ensured by the Lyapunov stability theorem. As a reference controller for the backstepping method, a hybrid neural controller is introduced in which the linear motor itself is controlled by a conventional PI velocity controller and the vibration of the associated flexible mechanism is suppressed from an outer control loop using a compensation signal from a multilayer perceptron network. To avoid the local minimum problem entailed in neural networks, the initial weights are searched for offline by means of a differential evolution algorithm. The states of a mechanical system for controllers are estimated using the Kalman filter. The theoretical results obtained from the control design are validated with the lumped mass model for a mechanism. Generalization of the mechanism allows the methods derived here to be widely implemented in machine automation. The control algorithms are first designed in a specially introduced nonlinear simulation model and then implemented in the physical linear motor using a DSP (Digital Signal Processor) application. The measurements prove that both controllers are capable of suppressing vibration, but that the backstepping method is superior to others due to its accuracy of response and stability properties.
Resumo:
This thesis studies the use of machine vision in RDF quality assurance and manufacturing. Currently machine vision is used in recycling and material detection and some commer- cial products are available in the market. In this thesis an on-line machine vision system is proposed for characterizing particle size. The proposed machine vision system is based on the mapping between image segmenta- tion and the ground truth of the particle size. The results shows that the implementation of such machine vision system is feasible.
Resumo:
Suunniteltiin ja rakennettiin suoraa vääntömomenttisäätöä soveltava taajuudenmuuttajakäyttö oikosulkumoottorin ohjaukseen korvaamaan passiivinen jarrukäyttö. Laite on kuntoutuslaite, jolla tehdään lihasvoiman mittauksia ja voimaharjoituksia. Selvitettiin kaupallisten moottoreiden ja taajuudenmuuttajien suoritusominaisuuksia ja tämän perusteella valittiin käyttöön sopivat laitteet. Työssä esitetään kaksi oikosulkumoottorin ohjaustapaa: vektorisäätö ja suora vääntömomenttisäätö. Merkittävin osa tästä työstä käsittelee - tarkan turvallisuussuunnitelman lisäksi - kuntoutuslaitteen prototyypin komponentteja, kokoamista ja suoritustestien tuloksia.
Resumo:
Keeping track of software assets and managing software installations in IT environments can be a hard endeavor, especially when the size and diversity of the environment grows. How to install and uninstall software efficiently and cost effectively? Are there too few or too many software licenses purchased? If installed, is the software actually in use? Software Asset Management (SAM) is a process that involves managing and optimizing the purchase, deployment, maintenance, utilization, and disposal of software applications within an organization. This master’s thesis describes a special Software Lifecycle Management Framework to provide solutions to the multitude of challenges within SAM. The main objectives when designing the framework was to provide a set of tools to control the software assets during their entire lifecycle while trying to minimize the costs related to owning and managing them.
Resumo:
Over the last decades, calibration techniques have been widely used to improve the accuracy of robots and machine tools since they only involve software modification instead of changing the design and manufacture of the hardware. Traditionally, there are four steps are required for a calibration, i.e. error modeling, measurement, parameter identification and compensation. The objective of this thesis is to propose a method for the kinematics analysis and error modeling of a newly developed hybrid redundant robot IWR (Intersector Welding Robot), which possesses ten degrees of freedom (DOF) where 6-DOF in parallel and additional 4-DOF in serial. In this article, the problem of kinematics modeling and error modeling of the proposed IWR robot are discussed. Based on the vector arithmetic method, the kinematics model and the sensitivity model of the end-effector subject to the structure parameters is derived and analyzed. The relations between the pose (position and orientation) accuracy and manufacturing tolerances, actuation errors, and connection errors are formulated. Computer simulation is performed to examine the validity and effectiveness of the proposed method.
Resumo:
Suomessa rautatiellä käytetään muutamia tuhansia sähköisesti ohjattavia vaihteita, joiden toiminta varmistetaan määräajoin tehtävillä huolloilla. Työssä on tutkittu, onko kehitteillä olevalla vaihteenohjaimella mahdollista mitata ja analysoida vaihteen kunnonvalvontaan liittyviä suureita. Tutkimuksessa on tutustuttu rautatietekniikkaan sekä vaihdetta ohjaavaan vaihteenkääntölaitteeseen. Tutkimuksen perusteella on kehitetty sulautettuun järjestelmään perustuva mittaus- ja analysointijärjestelmäsovellus, joka tekee mittauksia, havaintoja ja johtopäätöksiä vaihteen toiminnasta. Mittaukset on suoritettu moottoria ohjaavista johtimista ja mittaustulokset on tallennettu analysointia ja jatkokäsittelyä varten. Ohjelmiston toimintaa on varmistettu mittauksilla sekä laboratorio-olosuhteissa että oikealla vaihteella testausympäristössä. Saatujen tulosten perusteella voidaan todeta, että kehitetyllä laitteistolla on mahdollista toteuttaa vaihdetta diagnosoivia mittauksia riittävän laadukkaasti ja tarkasti. Työssä kehitetty järjestelmäalusta soveltuu käytettäväksi vaihteen diagnostiikan jatkokehittämiselle.
Resumo:
Diplomityön tavoitteena oli kehittää vuokamallisille kartonkipakkauksille laadunvarmistuslaitteisto. Kirjallisen osan alussa esiteltiin vuokamallisten kartonkipakkausten valmistusprosessia. Tästä siirryttiin laatuasioihin, jossa tärkeimmät asiat olivat kartonkivuokien valmistuksessa esiintyvät laatupoikkeamat ja konenäkö. Tutkimusosan alussa esitellään Lappeenrannan teknillisessä yliopistossa kehitetty kartonkivuokien valmistuslinjasto. Tämän jälkeen vaatimuslistan pohjalta suunnitellaan kyseiseen linjastoon sopiva automaattinen laadunvalvontalaite, johon sisältyy myös kartonkivuokien siirtolaite. Suunnitteluprosessi aloitettiin koekuvaamalla kartonkivuokia erilaisilla kameroilla ja valaistusmenetelmillä. Koekuvausten perusteella valittiin konenäkölaitteisto. Tämän jälkeen toiminnoista luotiin periaatepiirroksia, joista kehitettiin varsinainen suunnitelma. Työn tuloksena saatiin suunnitelma konenäköön perustuvan automaattisen laadunvalvontalaitteen rakentamiselle.
Resumo:
This bachelor’s thesis is a part of the research project realized in the summer 2011 in Lappeenranta University of Technology. The goal of the project was to create an automation concept for controlling an electrically excited synchronous motor. This thesis concentrates on the setup and requirements specification part of the concept. The setup consists of ABB AC500 as the PLC master device, DCS800 as an exciter and ACS800 as a frequency converter. The ACS800 frequency converter uses permanent magnet synchronous machine software to control the stator’s magnetic field, the DC drive handles the excitation and the AC500 PLC master controls the communication and functionality of the system. The requirements specification briefly explains the general over-view of the concept, the use and functionality of the PLC program and the requirements needed for the whole concept and the PLC program to work as intended.
Resumo:
Working capital is an investment which is tied up into the inventories and accounts receivable and which is released with accounts payable. Due to the current business landscape with tightened financial conditions and finance markets, organizations emphasize efficient working capital management. With efficient working capital management, a company can reduce the need of finance, free up cash, increase profitability, improve liquidity, increase the efficiency of operations, and decrease (financing) costs. From the perspective of an individual company, efficient working capital management means decreasing inventory levels by shortening the cycle time of inventories, decreasing accounts receivable by shortening the trade credit terms and effective collection procedures, and increasing the level of accounts payable by paying the suppliers later. From an inter-organizational perspective, however, working capital should not be sub-optimized by a single company but holistic view to working capital management through the supply chain should be adopted to create value and improve performance together. The purpose of this research is to take academic research as well as practical management towards inter-organizational working capital management. The thesis discusses the benefits as well as mechanisms of working capital management in the inter-organizational context and has two main objectives: (1) to examine the effect of inter-organizational working capital management on performance in the value chain context and (2) to develop models of working capital management for internal as well as inter-organizational value chains. The results of the archival research conducted in the value chain of the pulp and paper industry and the value chain of the automotive industry indicate that companies can increase relative profitability by managing working capital comprehensively by taking into account all three components, and holistically though the value chain. Companies in the value chain benefit from different strategies in working capital management depending on the position of the company in the value chain. This can be taken into account in inter-organizational working capital management. The effects of inter-organizational working capital management actions on the financing costs of working capital were studied via simulations. Simulations also show that the value chain and individual companies benefit from an inter-organizational view to working capital management. Inter-organizational working capital management actions include for example: shortening the cycle time of inventories, reducing product costs, shifting inventories, shortening payment terms, and considering the cost of capital. The thesis also provides solutions for the practical requirements for tools to control working capital. The design science part of the research introduces the adjusted cash conversion cycle (ACCC) model for internal value chains, as well as models for working capital management in the inter-organizational value chain context: the working capital management model (WCMM) and the financial cycle time model (FCTM) designed in corporation and product levels respectively. This research contributes to literature on working capital management and interorganizational accounting. The research gives a holistic, inter-organizational view to the management of working capital. It advances the knowledge in working capital management on operational level, increases knowledge in the recently risen theme of supply chainoriented, collaborative working capital management, combines management accounting research with supply chain management research, and contributes to the demand of practical inter-organizational accounting methods. In addition, the research has strong practical focus as new managerial methods are introduced.
Resumo:
Tutkimuksen tarkoituksena oli selvittää millainen kaksion sähkönkulutuskäyrä on ja mistä kuormista se koostuu. Tarkoituksena oli myös tutkia miten kuormansiirrot vaikuttavat sähkönkulutuskäyrään ja onko kuormansiirroissa säästöpotentiaalia ajatellen asiakkaan sähkökustannuksia. Säästöpotentiaalia laskettaessa oletettiin, että asiakkaalla on sähkösopimus, jonka hinta seuraa sähköpörssin (Nord Pool) spot-hintoja. Tutkimustuloksista nähdään, että asunnon pohjakuorma aiheutuu kylmälaitteista ja suuret sähkön kulutuspiikit aiheutuvat liedestä, astianpesukoneesta ja pyykinpesukoneesta. Kuormansiirtojen vaikutus normaaliin sähkönkulutus käyrään on se, että suurten kuormien aiheuttamat kulutuspiikit siirtyivät myöhemmäksi iltaan. Laskelmissa selvisi, että kuormansiirto ei tuo asiakkaalle merkittäviä säästöjä, koska säästöjen saanti edellyttäisi pidempiä mittausjaksoja sekä päivittäisiä suuria hinnanvaihteluita sähkön spot-hinnoissa. Tutkittiin myös millaisia kylmälaitteiden kulutuskäyrät ovat ja miten pysäytykset ja uudelleenkäynnistyksen vaikuttavat niihin.
Resumo:
The last decade has shown that the global paper industry needs new processes and products in order to reassert its position in the industry. As the paper markets in Western Europe and North America have stabilized, the competition has tightened. Along with the development of more cost-effective processes and products, new process design methods are also required to break the old molds and create new ideas. This thesis discusses the development of a process design methodology based on simulation and optimization methods. A bi-level optimization problem and a solution procedure for it are formulated and illustrated. Computational models and simulation are used to illustrate the phenomena inside a real process and mathematical optimization is exploited to find out the best process structures and control principles for the process. Dynamic process models are used inside the bi-level optimization problem, which is assumed to be dynamic and multiobjective due to the nature of papermaking processes. The numerical experiments show that the bi-level optimization approach is useful for different kinds of problems related to process design and optimization. Here, the design methodology is applied to a constrained process area of a papermaking line. However, the same methodology is applicable to all types of industrial processes, e.g., the design of biorefiners, because the methodology is totally generalized and can be easily modified.
Resumo:
The assembly and maintenance of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. The VV is made of stainless steel, which has poor machinability and tends to work harden very rapidly, and all the machining operations need to be carried out from inside of the ITER VV. A general industrial robot cannot be used due to its poor stiffness in the heavy duty machining process, and this will cause many problems, such as poor surface quality, tool damage, low accuracy. Therefore, one of the most suitable options should be a light weight mobile robot which is able to move around inside of the VV and perform different machining tasks by replacing different cutting tools. Reducing the mass of the robot manipulators offers many advantages: reduced material costs, reduced power consumption, the possibility of using smaller actuators, and a higher payload-to-robot weight ratio. Offsetting these advantages, the lighter weight robot is more flexible, which makes it more difficult to control. To achieve good machining surface quality, the tracking of the end effector must be accurate, and an accurate model for a more flexible robot must be constructed. This thesis studies the dynamics and control of a 10 degree-of-freedom (DOF) redundant hybrid robot (4-DOF serial mechanism and 6-DOF 6-UPS hexapod parallel mechanisms) hydraulically driven with flexible rods under the influence of machining forces. Firstly, the flexibility of the bodies is described using the floating frame of reference method (FFRF). A finite element model (FEM) provided the Craig-Bampton (CB) modes needed for the FFRF. A dynamic model of the system of six closed loop mechanisms was assembled using the constrained Lagrange equations and the Lagrange multiplier method. Subsequently, the reaction forces between the parallel and serial parts were used to study the dynamics of the serial robot. A PID control based on position predictions was implemented independently to control the hydraulic cylinders of the robot. Secondly, in machining, to achieve greater end effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. This thesis investigates the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two schemes of intelligent control for a hydraulically driven parallel mechanism based on the dynamic model: (1) a fuzzy-PID self-tuning controller composed of the conventional PID control and with fuzzy logic, and (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self-tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel mechanism based on rod length predictions. The serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should be controlled to hold the hexa-element. Thirdly, a finite element approach of multibody systems using the Special Euclidean group SE(3) framework is presented for a parallel mechanism with flexible piston rods under the influence of machining forces. The flexibility of the bodies is described using the nonlinear interpolation method with an exponential map. The equations of motion take the form of a differential algebraic equation on a Lie group, which is solved using a Lie group time integration scheme. The method relies on the local description of motions, so that it provides a singularity-free formulation, and no parameterization of the nodal variables needs to be introduced. The flexible slider constraint is formulated using a Lie group and used for modeling a flexible rod sliding inside a cylinder. The dynamic model of the system of six closed loop mechanisms was assembled using Hamilton’s principle and the Lagrange multiplier method. A linearized hydraulic control system based on rod length predictions was implemented independently to control the hydraulic cylinders. Consequently, the results of the simulations demonstrating the behavior of the robot machine are presented for each case study. In conclusion, this thesis studies the dynamic analysis of a special hybrid (serialparallel) robot for the above-mentioned special task involving the ITER and investigates different control algorithms that can significantly improve machining performance. These analyses and results provide valuable insight into the design and control of the parallel robot with flexible rods.
Resumo:
One of the main challenges in Software Engineering is to cope with the transition from an industry based on software as a product to software as a service. The field of Software Engineering should provide the necessary methods and tools to develop and deploy new cost-efficient and scalable digital services. In this thesis, we focus on deployment platforms to ensure cost-efficient scalability of multi-tier web applications and on-demand video transcoding service for different types of load conditions. Infrastructure as a Service (IaaS) clouds provide Virtual Machines (VMs) under the pay-per-use business model. Dynamically provisioning VMs on demand allows service providers to cope with fluctuations on the number of service users. However, VM provisioning must be done carefully, because over-provisioning results in an increased operational cost, while underprovisioning leads to a subpar service. Therefore, our main focus in this thesis is on cost-efficient VM provisioning for multi-tier web applications and on-demand video transcoding. Moreover, to prevent provisioned VMs from becoming overloaded, we augment VM provisioning with an admission control mechanism. Similarly, to ensure efficient use of provisioned VMs, web applications on the under-utilized VMs are consolidated periodically. Thus, the main problem that we address is cost-efficient VM provisioning augmented with server consolidation and admission control on the provisioned VMs. We seek solutions for two types of applications: multi-tier web applications that follow the request-response paradigm and on-demand video transcoding that is based on video streams with soft realtime constraints. Our first contribution is a cost-efficient VM provisioning approach for multi-tier web applications. The proposed approach comprises two subapproaches: a reactive VM provisioning approach called ARVUE and a hybrid reactive-proactive VM provisioning approach called Cost-efficient Resource Allocation for Multiple web applications with Proactive scaling. Our second contribution is a prediction-based VM provisioning approach for on-demand video transcoding in the cloud. Moreover, to prevent virtualized servers from becoming overloaded, the proposed VM provisioning approaches are augmented with admission control approaches. Therefore, our third contribution is a session-based admission control approach for multi-tier web applications called adaptive Admission Control for Virtualized Application Servers. Similarly, the fourth contribution in this thesis is a stream-based admission control and scheduling approach for on-demand video transcoding called Stream-Based Admission Control and Scheduling. Our fifth contribution is a computation and storage trade-o strategy for cost-efficient video transcoding in cloud computing. Finally, the sixth and the last contribution is a web application consolidation approach, which uses Ant Colony System to minimize the under-utilization of the virtualized application servers.