36 resultados para Inquiry-Based Activities
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Traditionally metacognition has been theorised, methodologically studied and empirically tested from the standpoint mainly of individuals and their learning contexts. In this dissertation the emergence of metacognition is analysed more broadly. The aim of the dissertation was to explore socially shared metacognitive regulation (SSMR) as part of collaborative learning processes taking place in student dyads and small learning groups. The specific aims were to extend the concept of individual metacognition to SSMR, to develop methods to capture and analyse SSMR and to validate the usefulness of the concept of SSMR in two different learning contexts; in face-to-face student dyads solving mathematical word problems and also in small groups taking part in inquiry-based science learning in an asynchronous computer-supported collaborative learning (CSCL) environment. This dissertation is comprised of four studies. In Study I, the main aim was to explore if and how metacognition emerges during problem solving in student dyads and then to develop a method for analysing the social level of awareness, monitoring, and regulatory processes emerging during the problem solving. Two dyads comprised of 10-year-old students who were high-achieving especially in mathematical word problem solving and reading comprehension were involved in the study. An in-depth case analysis was conducted. Data consisted of over 16 (30–45 minutes) videotaped and transcribed face-to-face sessions. The dyads solved altogether 151 mathematical word problems of different difficulty levels in a game-format learning environment. The interaction flowchart was used in the analysis to uncover socially shared metacognition. Interviews (also stimulated recall interviews) were conducted in order to obtain further information about socially shared metacognition. The findings showed the emergence of metacognition in a collaborative learning context in a way that cannot solely be explained by individual conception. The concept of socially-shared metacognition (SSMR) was proposed. The results highlighted the emergence of socially shared metacognition specifically in problems where dyads encountered challenges. Small verbal and nonverbal signals between students also triggered the emergence of socially shared metacognition. Additionally, one dyad implemented a system whereby they shared metacognitive regulation based on their strengths in learning. Overall, the findings suggested that in order to discover patterns of socially shared metacognition, it is important to investigate metacognition over time. However, it was concluded that more research on socially shared metacognition, from larger data sets, is needed. These findings formed the basis of the second study. In Study II, the specific aim was to investigate whether socially shared metacognition can be reliably identified from a large dataset of collaborative face-to-face mathematical word problem solving sessions by student dyads. We specifically examined different difficulty levels of tasks as well as the function and focus of socially shared metacognition. Furthermore, the presence of observable metacognitive experiences at the beginning of socially shared metacognition was explored. Four dyads participated in the study. Each dyad was comprised of high-achieving 10-year-old students, ranked in the top 11% of their fourth grade peers (n=393). Dyads were from the same data set as in Study I. The dyads worked face-to-face in a computer-supported, game-format learning environment. Problem-solving processes for 251 tasks at three difficulty levels taking place during 56 (30–45 minutes) lessons were video-taped and analysed. Baseline data for this study were 14 675 turns of transcribed verbal and nonverbal behaviours observed in four study dyads. The micro-level analysis illustrated how participants moved between different channels of communication (individual and interpersonal). The unit of analysis was a set of turns, referred to as an ‘episode’. The results indicated that socially shared metacognition and its function and focus, as well as the appearance of metacognitive experiences can be defined in a reliable way from a larger data set by independent coders. A comparison of the different difficulty levels of the problems suggested that in order to trigger socially shared metacognition in small groups, the problems should be more difficult, as opposed to moderately difficult or easy. Although socially shared metacognition was found in collaborative face-to-face problem solving among high-achieving student dyads, more research is needed in different contexts. This consideration created the basis of the research on socially shared metacognition in Studies III and IV. In Study III, the aim was to expand the research on SSMR from face-to-face mathematical problem solving in student dyads to inquiry-based science learning among small groups in an asynchronous computer-supported collaborative learning (CSCL) environment. The specific aims were to investigate SSMR’s evolvement and functions in a CSCL environment and to explore how SSMR emerges at different phases of the inquiry process. Finally, individual student participation in SSMR during the process was studied. An in-depth explanatory case study of one small group of four girls aged 12 years was carried out. The girls attended a class that has an entrance examination and conducts a language-enriched curriculum. The small group solved complex science problems in an asynchronous CSCL environment, participating in research-like processes of inquiry during 22 lessons (á 45–minute). Students’ network discussion were recorded in written notes (N=640) which were used as study data. A set of notes, referred to here as a ‘thread’, was used as the unit of analysis. The inter-coder agreement was regarded as substantial. The results indicated that SSMR emerges in a small group’s asynchronous CSCL inquiry process in the science domain. Hence, the results of Study III were in line with the previous Study I and Study II and revealed that metacognition cannot be reduced to the individual level alone. The findings also confirm that SSMR should be examined as a process, since SSMR can evolve during different phases and that different SSMR threads overlapped and intertwined. Although the classification of SSMR’s functions was applicable in the context of CSCL in a small group, the dominant function was different in the asynchronous CSCL inquiry in the small group in a science activity than in mathematical word problem solving among student dyads (Study II). Further, the use of different analytical methods provided complementary findings about students’ participation in SSMR. The findings suggest that it is not enough to code just a single written note or simply to examine who has the largest number of notes in the SSMR thread but also to examine the connections between the notes. As the findings of the present study are based on an in-depth analysis of a single small group, further cases were examined in Study IV, as well as looking at the SSMR’s focus, which was also studied in a face-to-face context. In Study IV, the general aim was to investigate the emergence of SSMR with a larger data set from an asynchronous CSCL inquiry process in small student groups carrying out science activities. The specific aims were to study the emergence of SSMR in the different phases of the process, students’ participation in SSMR, and the relation of SSMR’s focus to the quality of outcomes, which was not explored in previous studies. The participants were 12-year-old students from the same class as in Study III. Five small groups consisting of four students and one of five students (N=25) were involved in the study. The small groups solved ill-defined science problems in an asynchronous CSCL environment, participating in research-like processes of inquiry over a total period of 22 hours. Written notes (N=4088) detailed the network discussions of the small groups and these constituted the study data. With these notes, SSMR threads were explored. As in Study III, the thread was used as the unit of analysis. In total, 332 notes were classified as forming 41 SSMR threads. Inter-coder agreement was assessed by three coders in the different phases of the analysis and found to be reliable. Multiple methods of analysis were used. Results showed that SSMR emerged in all the asynchronous CSCL inquiry processes in the small groups. However, the findings did not reveal any significantly changing trend in the emergence of SSMR during the process. As a main trend, the number of notes included in SSMR threads differed significantly in different phases of the process and small groups differed from each other. Although student participation was seen as highly dispersed between the students, there were differences between students and small groups. Furthermore, the findings indicated that the amount of SSMR during the process or participation structure did not explain the differences in the quality of outcomes for the groups. Rather, when SSMRs were focused on understanding and procedural matters, it was associated with achieving high quality learning outcomes. In turn, when SSMRs were focused on incidental and procedural matters, it was associated with low level learning outcomes. Hence, the findings imply that the focus of any emerging SSMR is crucial to the quality of the learning outcomes. Moreover, the findings encourage the use of multiple research methods for studying SSMR. In total, the four studies convincingly indicate that a phenomenon of socially shared metacognitive regulation also exists. This means that it was possible to define the concept of SSMR theoretically, to investigate it methodologically and to validate it empirically in two different learning contexts across dyads and small groups. In-depth micro-level case analysis in Studies I and III showed the possibility to capture and analyse in detail SSMR during the collaborative process, while in Studies II and IV, the analysis validated the emergence of SSMR in larger data sets. Hence, validation was tested both between two environments and within the same environments with further cases. As a part of this dissertation, SSMR’s detailed functions and foci were revealed. Moreover, the findings showed the important role of observable metacognitive experiences as the starting point of SSMRs. It was apparent that problems dealt with by the groups should be rather difficult if SSMR is to be made clearly visible. Further, individual students’ participation was found to differ between students and groups. The multiple research methods employed revealed supplementary findings regarding SSMR. Finally, when SSMR was focused on understanding and procedural matters, this was seen to lead to higher quality learning outcomes. Socially shared metacognition regulation should therefore be taken into consideration in students’ collaborative learning at school similarly to how an individual’s metacognition is taken into account in individual learning.
Resumo:
Tutkimuksessa arvioidaan millaisia kyvykkyyksiä toimijoiltavaaditaan, jotta voidaan edistää verkostoja palvelevan innovaatiopolitiikan toteutumista ja toteuttaa käytäntölähtöistä innovaatiotoimintaa. Empiirinen osa tarkastelee Päijät-Hämeen toimijoiden asenneympäristöä ja toimimisen valmiuksia käytäntölähtöisen innovaatiotoiminnan tarpeisiin sopivaksi. Osaaminen kerääntyy yliopistopaikkakunnille ulkoisten suurtuotannon etujen mukaisesti. Ne alueet, joilla ei ole yliopistoa joutuvat luomaan muunlaista innovaatiokyvykkyyttä saavuttaakseen kilpailuetua. Siksi Päijät-Hämeen visiona on tulla johtavaksi käytäntölähtöisen innovaatiotoiminnan alueeksi hyvien toimintamallien ja tehokkaiden tiedonsiirtomekanismien avulla. Tämä vaatii alueen toimijoilta mm. korkeaa absorptiivista kapasiteettia ja heikkoja linkkejä alueen ulkopuolelle. Työn empiirinen osa koostuu 12:sta puolistrukturoidusta haastattelusta sekä kyselytutkimuksesta. Tiedonluonti ja -siirto alueelle nähtiin pääasiassa tutkimusmaailman tehtävänä, mutta varianssianalyysin perusteella tutkimusmaailma ei itse nähnyt olevansa siinä asemassa. Yhteisen kielen puuttuminen tutkimus- ja käytännön työelämän väliltä nähtiin puutteena.
Resumo:
Työn tavoitteena on esittää erilaisia mahdollisuuksia tutkivan oppimisen hyödyntämiseen tuotantotalouden koulutusohjelmassa. Työssä esitetään näiden opetusfilosofioiden perusperiaatteet. Lisäksi tutkitaan tutkivan oppimisen tuottamia hyötyjä koulutusohjelmalle, opiskelijoille ja tuleville työnantajille. Mukaan on otettu muissa yliopistossa hyödynnettyjä tapoja, mutta myös kehitetty erityisesti tuotantotalouden erityispiirteet huomioivia sovellettuja menetelmiä. Lisäksi tarkastellaan tuotantotalouden koulutusohjelmassa tuotettua ongelmalähtöiseen opiskeluun perustuvaa kurssia ”Toimitusketjun johtamisen teoriatyöpaja”. Työssä esitetään myös suunnitelma uusimuotoiselle, tutkivaan oppimiseen nojautuvalle ”Kandidaatintyö- ja seminaari” –kurssille. Kirjallisuuskatsauksessa perehdytään oppimisen ja muistin toiminnan perusteisiin. Tämän jälkeen esitellään näille periaatteille rakentuneiden tutkivan oppimisen ja ongelmalähtöisen oppimisen lähestymistavat ja menetelmät opetuksessa. Teorian pohjalta esitetään konkreettisia ideoita tutkivan oppimisen hyödyntämiseen opetuksessa. Tutkimuksen kahdesta case –tapauksesta ensimmäisessä esitetään, miten opiskelijat kokevat ongelmiin perustuvalla kurssilla opiskelun. Toinen case esittää, kuinka uusimuotoinen Kandidaatintyö- ja seminaari –kurssi on luotu ja miten se tukee taitoja, joita he tulevat tarvitsemaan myöhemmissä opinnoissaan ja työelämässä.
Resumo:
Tutkimus käynnistyi Maanpuolustuskorkeakoulun taktiikan laitoksen esittäessä aihepiiriä tutkittavaksi. Tutkimuksen tavoitteena on ollut lisätä tietämystä viestitaktiikan kehittymisestä yhtymän viestijärjestelmän käyttöönoton jälkeen 1980 – 2000-luvuilla osana operatiivistaktisten toimintaperiaatteiden ja -tapojen kehittymistä. Tutkimuksella on pyritty syventämään tietämystä taktisten periaatteiden muutoksista viestitaktiikan näkökulmasta. Tutkimuksessa tarkasteltiin maavoimien YVI-järjestelmillä varustettujen yhtymien viestitaktiikkaa sekä niissä tapahtuneita muutoksia. Muutoksia tarkasteltaessa tutkimuksessa keskityttiin käsitykseen viestitaktiikasta, viestitaktisiin periaatteisiin sekä viestipäällikköön ja hänen toimintakenttäänsä. Viestitaktisia periaatteita ja niissä tapahtuneita muutoksia vertailtiin myös yleisiin taktisiin periaatteisiin ja niiden painotuksissa tapahtuneisiin muutoksiin. Tutkimus on luonteeltaan kvalitatiivinen. Tutkimusongelmia lähestyttiin fenomenografisella tutkimusotteella, jossa tavoitteena on kuvailla, analysoida ja ymmärtää erilaisia käsityksiä ilmiöistä sekä käsitysten keskinäisistä suhteista. Lähdeaineiston muodostivat 18 viestitaktiikan asiantuntijan kokemusperäiset käsitykset viestitaktiikasta ja sen kehittymisestä YVIjärjestelmien käyttöönoton jälkeen. Käsityksistä muodostettiin merkitys- ja kuvauskategorioiden sekä tutkijan esiymmärryksen pohjalta induktiivisen päättelyn avulla tutkimuksen varsinaiset johtopäätökset. Tutkimushenkilöiden käsitysten sekä taktiikan ja viestitaktiikan aikaisempien määritelmien perusteella johtopäätöksenä määritettiin, että viestitaktiikka on tehtävän toteuttamiseen käytettävissä olevan viestillisen kapasiteetin optimaalista suunnittelua, soveltamista ja käyttöä viestivoimana haluttujen päämäärien saavuttamiseksi ja viestitaisteluiden voittamiseksi. Viestitaktikointi edellyttää viestitaisteluun liittyvien keinojen tuntemista sekä taitoa soveltaa niitä käytännössä. Tutkimustulosten perusteella keskeisiksi viestitaktisiksi periaatteiksi tärkeysjärjestyksessä muodostuivat - päämäärän ja tehtävän selkeys - varautuminen odottamattomiin tilanteen vaihteluihin - yksinkertaisuus - aktiivisuus ja oma-aloitteisuus. Keskeisiksi merkitystään lisänneiksi viestitaktisiksi periaatteiksi muodostuivat - voimien vaikutuksen keskittäminen - joukkojen ja voimien jakaminen (reservi) - varautuminen odottamattomiin tilanteen vaihteluihin - salaaminen ja harhauttaminen - turvallisuus. Selkeimpänä viestipäällikön tehtävien muutoksena pidettiin siirtymistä yksityiskohtaisesta viestiyhteyksien suunnittelijasta kokonaisvaltaiseksi yhtymän viestitoiminnan johtajaksi. Tutkimustulosten ja aikaisempien määritelmien perusteella johtopäätöksenä määritettiin, että viestipäällikkö johtaa yhtymän viestitoimintaa komentajan antamien vaatimusten mukaisesti ja vastaa yhtymän johtoryhmän jäsenenä viestitaktisista ratkaisuista haluttujen päämäärien saavuttamiseksi ja viestitaisteluiden voittamiseksi. Viestipäälliköltä edellytetään viestitaisteluun liittyvien keinojen tuntemista sekä taitoa soveltaa niitä käytännössä. Tutkimuksen mukaan yhtymän viestitaktiikkaan merkittävimmin vaikuttaneita tekijöitä olivat yhtymän viestijärjestelmien käyttöönotto, uusien esikunta- ja viestiyksiköiden kehittäminen, kiinteän viestiverkon ja johtamisjärjestelmäalan merkityksen kasvaminen, käytettävien tekniikoiden kehittyminen sekä joukkojen ja johtoportaiden tiedonsiirtotarpeiden kasvaminen. Viestitaktiikan osalta voidaan todeta deterministisen näkemyksen taistelusta ja taistelutilasta muuttuneen yleisten taktisten periaatteiden muutosten mukaisesti aikaisempaa monimuotoisempaan ja rohkeampaan, voluntaarisempaan, suuntaan.
Resumo:
The focus of the present work was on 10- to 12-year-old elementary school students’ conceptual learning outcomes in science in two specific inquiry-learning environments, laboratory and simulation. The main aim was to examine if it would be more beneficial to combine than contrast simulation and laboratory activities in science teaching. It was argued that the status quo where laboratories and simulations are seen as alternative or competing methods in science teaching is hardly an optimal solution to promote students’ learning and understanding in various science domains. It was hypothesized that it would make more sense and be more productive to combine laboratories and simulations. Several explanations and examples were provided to back up the hypothesis. In order to test whether learning with the combination of laboratory and simulation activities can result in better conceptual understanding in science than learning with laboratory or simulation activities alone, two experiments were conducted in the domain of electricity. In these experiments students constructed and studied electrical circuits in three different learning environments: laboratory (real circuits), simulation (virtual circuits), and simulation-laboratory combination (real and virtual circuits were used simultaneously). In order to measure and compare how these environments affected students’ conceptual understanding of circuits, a subject knowledge assessment questionnaire was administered before and after the experimentation. The results of the experiments were presented in four empirical studies. Three of the studies focused on learning outcomes between the conditions and one on learning processes. Study I analyzed learning outcomes from experiment I. The aim of the study was to investigate if it would be more beneficial to combine simulation and laboratory activities than to use them separately in teaching the concepts of simple electricity. Matched-trios were created based on the pre-test results of 66 elementary school students and divided randomly into a laboratory (real circuits), simulation (virtual circuits) and simulation-laboratory combination (real and virtual circuits simultaneously) conditions. In each condition students had 90 minutes to construct and study various circuits. The results showed that studying electrical circuits in the simulation–laboratory combination environment improved students’ conceptual understanding more than studying circuits in simulation and laboratory environments alone. Although there were no statistical differences between simulation and laboratory environments, the learning effect was more pronounced in the simulation condition where the students made clear progress during the intervention, whereas in the laboratory condition students’ conceptual understanding remained at an elementary level after the intervention. Study II analyzed learning outcomes from experiment II. The aim of the study was to investigate if and how learning outcomes in simulation and simulation-laboratory combination environments are mediated by implicit (only procedural guidance) and explicit (more structure and guidance for the discovery process) instruction in the context of simple DC circuits. Matched-quartets were created based on the pre-test results of 50 elementary school students and divided randomly into a simulation implicit (SI), simulation explicit (SE), combination implicit (CI) and combination explicit (CE) conditions. The results showed that when the students were working with the simulation alone, they were able to gain significantly greater amount of subject knowledge when they received metacognitive support (explicit instruction; SE) for the discovery process than when they received only procedural guidance (implicit instruction: SI). However, this additional scaffolding was not enough to reach the level of the students in the combination environment (CI and CE). A surprising finding in Study II was that instructional support had a different effect in the combination environment than in the simulation environment. In the combination environment explicit instruction (CE) did not seem to elicit much additional gain for students’ understanding of electric circuits compared to implicit instruction (CI). Instead, explicit instruction slowed down the inquiry process substantially in the combination environment. Study III analyzed from video data learning processes of those 50 students that participated in experiment II (cf. Study II above). The focus was on three specific learning processes: cognitive conflicts, self-explanations, and analogical encodings. The aim of the study was to find out possible explanations for the success of the combination condition in Experiments I and II. The video data provided clear evidence about the benefits of studying with the real and virtual circuits simultaneously (the combination conditions). Mostly the representations complemented each other, that is, one representation helped students to interpret and understand the outcomes they received from the other representation. However, there were also instances in which analogical encoding took place, that is, situations in which the slightly discrepant results between the representations ‘forced’ students to focus on those features that could be generalised across the two representations. No statistical differences were found in the amount of experienced cognitive conflicts and self-explanations between simulation and combination conditions, though in self-explanations there was a nascent trend in favour of the combination. There was also a clear tendency suggesting that explicit guidance increased the amount of self-explanations. Overall, the amount of cognitive conflicts and self-explanations was very low. The aim of the Study IV was twofold: the main aim was to provide an aggregated overview of the learning outcomes of experiments I and II; the secondary aim was to explore the relationship between the learning environments and students’ prior domain knowledge (low and high) in the experiments. Aggregated results of experiments I & II showed that on average, 91% of the students in the combination environment scored above the average of the laboratory environment, and 76% of them scored also above the average of the simulation environment. Seventy percent of the students in the simulation environment scored above the average of the laboratory environment. The results further showed that overall students seemed to benefit from combining simulations and laboratories regardless of their level of prior knowledge, that is, students with either low or high prior knowledge who studied circuits in the combination environment outperformed their counterparts who studied in the laboratory or simulation environment alone. The effect seemed to be slightly bigger among the students with low prior knowledge. However, more detailed inspection of the results showed that there were considerable differences between the experiments regarding how students with low and high prior knowledge benefitted from the combination: in Experiment I, especially students with low prior knowledge benefitted from the combination as compared to those students that used only the simulation, whereas in Experiment II, only students with high prior knowledge seemed to benefit from the combination relative to the simulation group. Regarding the differences between simulation and laboratory groups, the benefits of using a simulation seemed to be slightly higher among students with high prior knowledge. The results of the four empirical studies support the hypothesis concerning the benefits of using simulation along with laboratory activities to promote students’ conceptual understanding of electricity. It can be concluded that when teaching students about electricity, the students can gain better understanding when they have an opportunity to use the simulation and the real circuits in parallel than if they have only the real circuits or only a computer simulation available, even when the use of the simulation is supported with the explicit instruction. The outcomes of the empirical studies can be considered as the first unambiguous evidence on the (additional) benefits of combining laboratory and simulation activities in science education as compared to learning with laboratories and simulations alone.
Resumo:
Contemporary organisations have to embrace the notion of doing ‘more with less’. This challenges knowledge production within companies and public organisations, forcing them to reorganise their structures and rethink what knowledge production actually means in the context of innovation and how knowledge is actually produced among various professional groups within the organisation in their everyday actions. Innovations are vital for organisational survival, and ‘ordinary’ employees and customers are central but too-often ignored producers of knowledge for contemporary organisations. Broader levels of participation and reflexive practices are needed. This dissertation discusses the missing links between innovation research conducted in the context of industrial management, arts, and culture; applied drama and theatre practices (specifically post-Boalian approaches); and learning – especially organising reflection – in organisational settings. This dissertation (1) explores and extends the role of research-based theatre to organising reflection and reflexive practices in the context of practice-based innovation, (2) develops a reflexive model of RBT for investigating and developing practice-based organisational process innovations in order to contribute to the development of a tool for innovation management and analysis, and (3) operationalises this model within private- and publicsector organisations. The proposed novel reflexive model of research-based theatre for investigating and developing practice-based organisational process innovations extends existing methods and offers a different way of organising reflection and reflexive practices in the context of general innovation management. The model was developed through five participatory action research processes conducted in four different organisations. The results provide learning steps – a reflection path – for understanding complex organisational life, people, and relations amid renewal and change actions. The proposed model provides a new approach to organising and cultivating reflexivity in practice-based innovation activities via research-based theatre. The results can be utilised as a guideline when processing practice-based innovation within private or public organisations. The model helps innovation managers to construct, together with their employees, temporary communities where they can learn together through reflecting on their own and each others’ experiences and to break down assumptions related to their own perspectives. The results include recommendations for practical development steps applicable in various organisations with regard to (i) application of research-based theatre and (ii) related general innovation management. The dissertation thus contributes to the development of novel learning approaches in knowledge production. Keywords: practice-based innovation, research-based theatre, learning, reflection, mode 2b knowledge production
Resumo:
The aim of this thesis was to examine emotions in a web-based learning environment (WBLE). Theoretically, the thesis was grounded on the dimensional model of emotions. Four empirical studies were conducted. Study I focused on students’ anxiety and their self-efficacy in computer-using situations. Studies II and III examined the influence of experienced emotions on students’ collaborative visible and non-collaborative invisible activities and lurking in a WBLE. Study II also focused on the antecedents of the emotions students experience in a web-based learning environment. Study IV concentrated on clarifying the differences between emotions experienced in face-to-face and web-based collaborative learning. The results of these studies are reported in four original research articles published in scientific journals. The present studies demonstrate that emotions are important determinants of student behaviour in a web-based learning, and justify the conclusion that interactions on the web can and do have an emotional content. Based on the results of these empirical studies, it can be concluded that the emotions students experience during the web-based learning result mostly from the social interactions rather than from the technological context. The studies indicate that the technology itself is not the only antecedent of students’ emotional reactions in the collaborative web-based learning situations. However, the technology itself also exerted an influence on students’ behaviour. It was found that students’ computer anxiety was associated with their negative expectations of the consequences of using technology-based learning environments in their studies. Moreover, the results also indicated that student behaviours in a WBLE can be divided into three partially overlapping classes: i) collaborative visible ii) non-collaborative invisible activities, and iii) lurking. What is more, students’ emotions experienced during the web-based learning affected how actively they participated in such activities in the environment. Especially lurkers, i.e. students who seldom participated in discussions but frequently visited the online environment, experienced more negatively valenced emotions during the courses than did the other students. This result indicates that such negatively toned emotional experiences can make the lurking individuals less eager to participate in other WBLE courses in the future. Therefore, future research should also focus more precisely on the reasons that cause individuals to lurk in online learning groups, and the development of learning tasks that do not encourage or permit lurking or inactivity. Finally, the results from the study comparing emotional reactions in web-based and face-to-face collaborative learning indicated that the learning by means of web-based communication resulted in more affective reactivity when compared to learning in a face-to-face situation. The results imply that the students in the web-based learning group experienced more intense emotions than the students in the face-to-face learning group.The interpretations of this result are that the lack of means for expressing emotional reactions and perceiving others’ emotions increased the affectivity in the web-based learning groups. Such increased affective reactivity could, for example, debilitate individual’s learning performance, especially in complex learning tasks. Therefore, it is recommended that in the future more studies should be focused on the possibilities to express emotions in a text-based web environment to ensure better means for communicating emotions, and subsequently, possibly decrease the high level of affectivity. However, we do not yet know whether the use of means for communicating emotional expressions via the web (for example, “smileys” or “emoticons”) would be beneficial or disadvantageous in formal learning situations. Therefore, future studies should also focus on assessing how the use of such symbols as a means for expressing emotions in a text-based web environment would affect students’ and teachers’ behaviour and emotional state in web-based learning environments.
Resumo:
The integrated system of design for manufacturing and assembly (DFMA) and internet based collaborative design are presented to support product design, manufacturing process, and assembly planning for axial eccentric oil-pump design. The presented system manages and schedules group oriented collaborative activities. The design guidelines of internet based collaborative design & DFMA are expressed. The components and the manufacturing stages of axial eccentric oil-pump are expressed in detail. The file formats of the presented system include the data types of collaborative design of the product, assembly design, assembly planning and assembly system design. Product design and assembly planning can be operated synchronously and intelligently and they are integrated under the condition of internet based collaborative design and DFMA. The technologies of collaborative modelling, collaborative manufacturing, and internet based collaborative assembly for the specific pump construction are developed. A seven-security level is presented to ensure the security of the internet based collaborative design system.
Resumo:
Tämän diplomityön tavoitteena oli selvittää arvoketjuanalyysin avulla toiminnot, joilla voittoatavoittelemattoman, julkisen osakeyhtiön toimintaa voitaisiin kuvata. Tarkoituksena oli selvittää mainitut toiminnot yleisesti ja luoda malli kohdeyrityksen arvoketjusta ja sen toiminnoista. Tutkielma jakautuu teoreettiseen ja empiiriseen osaan. Ensimmäinen pohjautuu aikaisempaan tutkimukseen ja kirjallisuuteen sidosryhmistä, arvon muodostumisesta ja arvoketjuanalyysistä. Jälkimmäinen on laadullista tapaustutkimusta. Empiriassa mallinnettiin Lappeenranta Innovation Oy:nsisäisiä toimintoja ja sidosryhmien odotuksia. Empiirinen tutkimus perustui kohdeyrityksen omistajille ja henkilöstölle tehtyihin haastatteluihin sekä yrityksen toiminnan päivittäiseen seurantaan. Johtopäätöksenätodettiin, että julkisen, voittoa tavoittelemattoman yrityksen toiminnot on mahdollista kuvata arvoketjuanalyysin avulla. Alan ja yrityksen asettamat erityispiirteet toivat haasteita määrittelylle, mutta silti arvoketju antoi selkeän tavan kohdeyrityksen toimintojen mallintamiselle.
Resumo:
Tämän diplomityön tavoitteena on kuvata tiedonkulkua projektiliiketoimintaa harjoittavassa yrityksessä sekä analysoida kuvausta määrittäen mahdolliset kehityskohdat. Työssätuotetut kuvaukset ja kehityskohtien määrittäminen toimivat pohjana yrityksen kehittäessä projektien hallintaansa tulevaisuudessa. Työssä valitaan tietojohtamisen näkökulma sopivaksi lähestymistavaksi yrityksen toiminnananalysointiin. Haastatteluin kerätyn tutkimusmateriaalin perusteella luodaan prosessikuvaukset jotka mallintavat tietovirtoja yrityksen projektien aikana tapahtuvien prosessien välillä. Kuvausta peilataan tietämyksen luomisen sekä projektien tietojohtamisen teoriaan ja määritetään kehityskohteita. Kehityskohteiden määrittämisen lisäksi ehdotetaan mahdollisia toimenpiteitä tiedon ja tietämyksen hallinnan kehittämiseksi. Kokemusten ja opittujen asioiden sekäpalautteen kerääminen projektien aikana sekä niiden jälkeen havaittiin tärkeimmäksi kehityskohdaksi. Näiden keräämisen voidaan todeta vaativan järjestelmällisyyttä jotta projektien onnistumiset sekä niissä saavutetut parannukset voidaan toistaa jatkossa ja virheet sekä epäonnistumiset sitä vastoin välttää.
Resumo:
Tämän tutkimuksen tarkoituksena on tutkia sellu- ja paperiteollisuuden toimintojen luonnetta sekä miten yrityksen rajapinnat ovat muodostuneet ko. teollisuudenalalla. Tutkimus on eksploratiivinen ja luonteeltaan kvalitatiivinen. Tutkimuksen aineisto kerättiin yrityksissä tehdyillä teemahaastatteluilla. Sellu- ja paperitehtaan toimintojen analysoinnissa käytetään resurssiperusteista näkemystä ja transaktiokustannusteoriaa. Tutkimuksen yritysten rakennetta voidaan pitää varsin konservatiivisena. Teoreettinen kehys pystyi selittämään varsinaisen tuotannon järjestämistä varsin hyvin. Tukitoiminnoissa löytyi ristiriitoja teorian ja todellisuuden välillä. Tuotantotoiminnot kannattaa pitää yrityksen sisällä, koska ne täyttävät VRIN-attribuutit ja niihin liittyy korkeita transaktiokustannuksia. Suurin osa tukitoiminnoista voidaan luokitella triviaaleiksi. Joitain tukitoimintoja voidaan kuitenkin luokitella strategisesti tärkeiksi, ja voidaan päätellä, että ne pitäisi pitää yrityksen sisällä. Tässä suhteessa tulokset olivat kuitenkin ristiriitaisia, ja lisätutkimuksia tarvittaisiin lopullisten johtopäätösten tekemiseen.
Resumo:
This paper analyzes the possibilities of integrating cost information and engineering design. Special emphasis is on finding the potential of using the activity-based costing (ABC) method when formulating cost information for the needs of design engineers. This paper suggests that ABC is more useful than the traditional job order costing, but the negative issue is the fact that ABC models become easily too complicated, i.e. expensive to build and maintain, and difficult to use. For engineering design the most suitable elements of ABC are recognizing activities of the company, constructing acitivity chains, identifying resources, activity and cost drivers, as wellas calculating accurate product costs. ABC systems including numerous cost drivers can become complex. Therefore, a comprehensive ABC based cost information system for the use of design engineers should be considered criticaly. Combining the suitable ideas of ABC with engineering oriented thinking could give competentresults.
Resumo:
The changing business environment demands that chemical industrial processes be designed such that they enable the attainment of multi-objective requirements and the enhancement of innovativedesign activities. The requirements and key issues for conceptual process synthesis have changed and are no longer those of conventional process design; there is an increased emphasis on innovative research to develop new concepts, novel techniques and processes. A central issue, how to enhance the creativity of the design process, requires further research into methodologies. The thesis presentsa conflict-based methodology for conceptual process synthesis. The motivation of the work is to support decision-making in design and synthesis and to enhance the creativity of design activities. It deals with the multi-objective requirements and combinatorially complex nature of process synthesis. The work is carriedout based on a new concept and design paradigm adapted from Theory of InventiveProblem Solving methodology (TRIZ). TRIZ is claimed to be a `systematic creativity' framework thanks to its knowledge based and evolutionary-directed nature. The conflict concept, when applied to process synthesis, throws new lights on design problems and activities. The conflict model is proposed as a way of describing design problems and handling design information. The design tasks are represented as groups of conflicts and conflict table is built as the design tool. The general design paradigm is formulated to handle conflicts in both the early and detailed design stages. The methodology developed reflects the conflict nature of process design and synthesis. The method is implemented and verified through case studies of distillation system design, reactor/separator network design and waste minimization. Handling the various levels of conflicts evolve possible design alternatives in a systematic procedure which consists of establishing an efficient and compact solution space for the detailed design stage. The approach also provides the information to bridge the gap between the application of qualitative knowledge in the early stage and quantitative techniques in the detailed design stage. Enhancement of creativity is realized through the better understanding of the design problems gained from the conflict concept and in the improvement in engineering design practice via the systematic nature of the approach.
Resumo:
Productivity and profitability are important concepts and measures describing the performance and success of a firm. We know that increase in productivity decreases the costs per unit produced and leads to better profitability. This common knowledge is not, however, enough in the modern business environment. Productivity improvement is one means among others for increasing the profitability of actions. There are many means to increase productivity. The use of these means presupposes operative decisions and these decisions presuppose informationabout the effects of these means. Productivity improvement actions are in general made at floor level with machines, cells, activities and human beings. Profitability is most meaningful at the level of the whole firm. It has been very difficult or even impossible to analyze closely enough the economical aspects of thechanges at floor level with the traditional costing systems. New ideas in accounting have only recently brought in elements which make it possible to considerthese phenomena where they actually happen. The aim of this study is to supportthe selection of objects to productivity improvement, and to develop a method to analyze the effects of the productivity change in an activity on the profitability of a firm. A framework for systemizing the economical management of productivity improvement is developed in this study. This framework is a systematical way with two stages to analyze the effects of productivity improvement actions inan activity on the profitability of a firm. At the first stage of the framework, a simple selection method which is based on the worth, possibility and the necessity of the improvement actions in each activity is presented. This method is called Urgency Analysis. In the second stage it is analyzed how much a certain change of productivity in an activity affects the profitability of a firm. A theoretical calculation model with which it is possible to analyze the effects of a productivity improvement in monetary values is presented. On the basis of this theoretical model a tool is made for the analysis at the firm level. The usefulness of this framework was empirically tested with the data of the profit center of one medium size Finnish firm which operates in metal industry. It is expressedthat the framework provides valuable information about the economical effects of productivity improvement for supporting the management in their decision making.