55 resultados para Incineration.
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Dioxins and furans, PCDD/Fs, are highly toxic substances formed in post combustion zones in furnaces. PCDD/F emissions are regulated by a waste incineration directive which relates also to co-incineration plants. Several observations of dioxin and furan enhancements in wet scrub- bers have been reported previously. This is thought to be due to the so-called "memory effect" which occurs when dioxins and furans absorb into plastic material in scrubbers and desorb when ambient circumstances alter significantly. At the co-incineration plant involved, dioxins and furans are controlled with a wet scrubber, the tower packing of which is made of plastic in which activated carbon particles are dispersed. This should avoid the memory effect and act as a dioxin and furan sink since dioxins and furans are absorbed irreversibly into the packing ma- terial. In this case, the tower packing in the scrubber is covered with a white layer that has been found to be mainly aluminium. The aim of this thesis was to determine the aluminium balance and the dioxin and furan behaviour in the scrubber and, thus, the impacts that the foul- ing has on dioxin and furan removal. The source of aluminium, reasons for fouling and further actions to minimize its impacts on dioxin and furan removal were also to be discovered. Measurements in various media around the scrubber and in fuels were made and a profile analysis of PCDD/F and mass balance calculations were carried out. PCDD/F content de- creased in the scrubber. The reduced PCDD/F was not discharged into scrubbing water. The removal mechanism seems to work in spite of the fouling, at least with low PCDD/F loads. Most of the PCDD/F in excess water originates from the Kymijoki River which is used as feeding water in the scrubber. Fouling turned out to consist mainly of aluminium hydroxides. Sludge combusted in the furnace was found to be a significant source of aluminium. Ways to minimize the fouling would be adjustment of pH to a proper lever, installation of a mechanical filter to catch the loose material from the scrubbing water and affecting the aluminium content of the sludge.
Resumo:
Waste has been incinerated for energy utilization for more than a hundred years, but the harmful emissions emitted from the incineration plants did not begin to cause concern until the 1980s. Many plants were shutdown and the waste incineration plant in Kyläsaari Helsinki was one of them. In later years, new landfill regulations have increased the interest in waste incineration. During the last year, four new plants were taken into operation in Finland, Westenergy in Vaasa among them. The presence of dust has been observed indoors at Westenergy waste incineration plant. Dust is defined as particles with a diameter above 10 μm, while fine particles have a diameter smaller than 2.5 μm, ultrafine under 0.1 μm and nanoparticles under 0.05 μm. In recent years, the focus of particle health research has been changed to investigate smaller particles. Ultrafine particles have been found to be more detrimental to health than larger particles. Limit values regulating the concentrations of ultrafine particles have not been determined yet. The objective of this thesis was to investigate dust and particles present inside the Westenergy waste incineration facility. The task was to investigate the potential pollutant sources and to give recommendations of how to minimize the presence of dust and particles in the power plant. The total particle number concentrations and size distributions where measured at 15 points inside the plant with an Engine Exhaust Particle Sizer (EEPS) Spectrometer. The measured particles were mainly in the ultrafine size range. Dust was only visually investigated, since the main purpose was to follow the dust accumulation. The measurement points inside the incineration plant were chosen according to investigate exposure to visitors and workers. At some points probable leakage of emissions were investigated. The measurements were carried out during approximately one month in March–April 2013. The results of the measurements showed that elevated levels of dust and particles are present in the indoor air at the waste incineration plant. The cleanest air was found in the control room, warehouse and office. The most polluted air was near the sources that were investigated due to possible leakage and in the bottom ash hall. However, the concentrations were near measured background concentrations in European cities and no leakage could be detected. The high concentrations were assumed to be a result of a lot of dust and particles present on surfaces that had not been cleaned in a while. The main source of the dust and particles present inside the waste incineration plant was thought to be particles and dust from the outside air. Other activities in the area around the waste incineration facility are ground work activities, stone crushing and traffic, which probably are sources of particle formation. Filtration of the outside air prior entering the facility would probably save personnel and visitors from nuisance and save in cleaning and maintenance costs.
Resumo:
Työn tavoitteena on kartoittaa yhdyskuntalietteen ja kierrätys- sekä biopolttoaineiden käsittelyä ja polttoa lietteenpolttolaitoksen tarpeita ajatellen. Lietteen käsittelyketjun ja kierrätys- sekä biopolttoaineketjujen tekninen tarkastelu on siis työn keskeinen tavoite. Lisäksi lasketaan polttolaitoksen suurimpia mahdollisia investointikustannuksia eri polttoainevaihtoehdoilla. Työssä tehdään muun ohella case-tarkastelua Kaakkois- Suomen alueeseen liittyen. Tavoitteena on muodostaa tarkoitukseen soveltuva polttoaineratkaisu kullekin tapauk-selle. Työn alkuosassa tutustutaan yleisesti lietteeseen sekä polttoaineen että jätteen roolissa. Tarkastelu sisältää tietoja lietteen ominaisuuksista sekä lietteenkäsittelyssä olennaisista lainsäädännöllisistä seikoista. Samoin katsastetaan hieman lietteen esikäsittelyä, mekaanista vedenerotusta, termistä kuivausta ja polttoa tarkastellaan yleisessä valossa. Lisäksi alkuosassa keskitytään eri bio- jakierrätyspolttoainevaihtoehtoihin tarkastelemalla niiden yleisyyttä polttoaineena sekä esittelemällä niiden käsittelyketjuja. Työn loppupuoliskolla kiinnitetään huomiota case tapausten avulla polttolaitoksesta saataviin tuottoihin sekä millaisen liikkumavaran eri polttoainevaihtoehdot investointien osalta sallivat. Case-tapauksissa pohditaan Kymenlaakson ja Etelä-Karjalan paikallisia lietteen-polttomahdollisuuksia yhdistettynä kierrätys- tai biopolttoaineisiin. Mekaanisesti kuivattua lietettä käsitellään kyseisissä tapauksissa vuosittain 6000 t ja 15 000 t. Lietteen polton tuottama sähkö- ja lämpöteho näyttävät riippuvan voimakkaasti lietteen kuiva-ainepitoisuudesta, eivät niinkään lietteen muista ominaisuuksista. Lisäksi joko bio- tai kierrätyspolttoaineella saadaan sähkön- ja lämmöntuotantoa nostettua huomattavasti.
Resumo:
Tämän työn tarkoituksena oli selvittää mekaanisen massan valmistuksen käsittävän paperitehtaan rejektija jätevirtojen poltettavuutta, jos paperitehtaan vesikiertojen sulkemisastetta lisätään. Jotta prosessin tilannetta sulkemisen jälkeen saatiin arvioitua, Anjalan paperitehtaan nykypäivän PK3:n prosessia tutkittiin kuorimolta jätevesilaitokselle. Kirjallisuusosassa käsiteltiin rejekti- ja jätevirtojen alkuperää mekaanista massaa käyttävässä paperitehtaassa. Myös tämän päivän jätevedenkäsittelyprosessit sekä sulkemisessa mahdolliset prosessiveden puhdistustekniikat esiteltiin lyhyesti. Lisäksikäytiin läpi nykypäivänä metsäteollisuudessa käytössä olevat polttotekniikat sekä polttoaineiden karakterisointi kattilan käytettävyyden ja päästöjen kannalta. Anjalan PK3:lla käytetään sekä peroksidi- että ditioniittivalkaistua tai pelkästään ditioniittivalkaistua hioketta riippuen tuotannossa olevasta lajista. PK3-prosessissa syntyneet jätevesi-, liete- ja muut jätevirrat selvitettiin molemmissa valkaisuolosuhteissa. Prosessin eniten liuennutta orgaanista ainesta sisältävät jätevesijakeet, 3-hiomon kuumankierron ja kirkassuodoksen ulosajot sekä kuoripuristimen suodos, valittiin puhdistettaviksi virroiksi prosessin sulkemista arvioitaessa. Kun peroksidivalkaisua käytettiin 3-hiomolla, TOC-kuorma jokeen oli 30 % suurempi kuin pelkällä ditioniittivalkaisulla. Jos prosessin sulkemisastetta lisättäisiin, TOC-kuorma olisi 30 %pienempi kuin tänäpäivänä peroksidivalkaisua käytettäessä (80 % puhdistustehokkuudella). Prosessin sulkemisastetta lisättäessä biolietettä muodostuisi n. 30 % vähemmän verrattuna nykytilanteeseen, sillä mikrobien ravintona käyttämää orgaanista ainesta päätyisi vähemmän jäteveteen. 3-hiomon peroksidivalkaisun vaikutus kattilan käytettävyyteen ja päästöihin oli pieni, sillä biolietteen osuus polttoaineen syötöstä oli vain 4 %. Vain osa biolietteestä muodostui 3-hiomolta peräisin olevaa orgaanista ainesta poistettaessa. Jos nykyisen pääpolttoaineen, PDF:n,osuuden jättää huomioimatta, SO2- ja NOx-päästöt sekä leijupedin sintrautuvuus ovat hiukan suuremmat käytettäessä peroksidivalkaisua 3-hiomolla kuin pelkästään ditioniittivalkaisulla. Jos kuoripuristimen ja hiomon suodosten puhdistuksen konsentraatit johdetaan poltettaviksi BFB-tyyppiseen kattilaan, leijupedin sintrautuminen tulisi olemaan suurin ongelma. Myös raskasmetalli-, SO2- ja NOx-päästöt lisääntyisivät merkittävästi verrattuna nykyiseen tilanteeseen. Sen sijaan kattilan korroosioriski tuskin lisääntyisi. Lisäksi konsentraattien kosteuspitoisuus olisi korkea, mikä tekisi poltosta kannattamatonta veden haihdutuksen vaatiessa paljon energiaa. Yksityiskohtaisempaa tutkimusta tarvitaan vielä prosessin sulkemisen vaikutuksista päästöihin ja kattilan käytettävyyteen. Myös muita konsentraattien hävittämismahdollisuuksia tulisi tutkia lisää.
Resumo:
Työn tavoitteena on kartoittaa yhdyskuntalietteen käsittelyä lietteenpolttolaitoksen tarpeita ajatellen. Lietteen käsittelytekniikoiden ja kuljetusvaihtoehtojen selvittäminen on siis työn keskeinen tavoite. Lisäksi otetaan selvää näiden tekijöiden kustannusrakenteesta. Yhdyskuntalietteen ominaisuuksien sekä käsittelyyn liittyvien ongelmakohtien valottaminen kuuluu samoin työn tavoitteisiin. Työssä tehdään muun ohella case-tarkastelua Kaakkois-Suomen alueeseen liittyen. Tavoitteena on muodostaa tarkoitukseen soveltuva lietteenkäsittelymalli kullekin tapaukselle. Työn alkuosassa tutustutaan yleisesti lietteeseen sekä polttoaineen että jätteen roolissa. Tarkastelu sisältää tietoja lietteen ominaisuuksista ja muodostuvista määristä sekä lietteenkäsittelyssä olennaisista lainsäädännöllisistä seikoista. Samoin katsastetaan hieman jäteve¬denpuhdistusprosessiin sekä näin ollen lietteen syntyyn. Lietteen esikäsittelyä, mekaanista vedenerotusta, termistä kuivausta ja polttoa tarkastellaan yleisessä valossa. Mekaanisen vedenerotuksen osalta myös eritellään ja vertaillaan laitteita. Etenkin linko, mutta myös suotonauhapuristin osoittautuivat erityisen sopiviksi kunnallisen lietteen käsittelyyn. Työn loppupuoliskolla kiinnitetään huomiota lietteen varastointiin sekä syöttö-ja purkumenetelmiin, lyhyen etäisyyden siirtoon ja pidemmän matkan kuljetukseen. Case-tapauksissa pohditaan Kymenlaakson ja Etelä-Karjalan paikallisia lietteenkäsittelymahdollisuuksia. Mekaanisesti kuivattua lietettä käsitellään kyseisissätapauksissa vuosittain 6000 t ja 15 000 t. Lietteen polton tuottama sähkö- ja lämpöteho näyttävät riippuvan voimakkaasti lietteen kuiva-ainepitoisuudesta, eivät niinkään lietteen muista ominaisuuksista. Lietteenkäsittelykustannukset tiivistetystä lietteestä termiseen kuivaukseen soveltuvaksi polttoaineeksi vaihtelevat10-20 \ lietetonnia kohden, riippuen käsittelyvaiheiden määrästä. Kustannuksia syntyy eniten mekaanisesta vedenerotuksesta ja varastoinnista.
Resumo:
Suomen jätehuolto on kokemassa murrosta kuluvina aikoina. Pienimuotoinen jätteen rinnakkaispoltto, joka on ollut Suomen jätehuollolle ominaista, uhkaa koitua kannattamattomaksi ja loppua kokonaan. Tässä työssä pyritään selvittämään jätteen rinnakkaispolton rooli ja rajaehdot Suomen jätestrategiassa nytkun jätehuolto on muuttunut uusien direktiivien voimaan astumisen myötä. Työssäkäsitellään rinnakkaispolttoa koskevaa lainsäädäntöä ja sen vaikutusta polton tulevaisuuteen. Rajaehtoja on tarkasteltu savukaasupäästöjen, päästörajojen ja tuhkan ominaisuuksien muuttumisen avulla polttosuhteen muuttuessa. Lisäksi työssä on arvioitu jätteenpolttoasetuksen aiheuttamat lisäkustannukset jätettä polttaville voimalaitoksille ja pohdittu, miten kustannukset on kompensoitavissa. Työn perusteella vaikuttaa siltä, että jätteen rinnakkaispoltolla voi tulevaisuudessakin olla merkittävä rooli Suomen jätehuollossa. Jätteen energiahyödyntämistä joudutaan lisäämään tulevaisuudessa rutkasti, jotta saavutettaisiin vaadittu jätteen hyötykäyttötaso. Rinnakkaispolton alalta on Suomessa huippuosaamista ja laitospotentiaalia on valmiina, joten rinnakkaispoltto tarjoaa helpon mahdollisuuden jätteen hyödyntämisasteen parantamiseen. Kriittiseksi tekijäksimuodostuu se, voiko yhdyskuntajätteistä valmistettua polttoainetta polttaa sähkön ja lämmön yhteistuotantoon tarkoitetuilla laitoksilla. Mikäli se olisi mahdollista, voisi tämän työn perusteella rinnakkaispoltolla olla suuri rooli suomalaisessa jätehuollossa ja sen tulevaisuudessa.
Resumo:
Uudistunut ympäristölainsäädäntö vaatii energiantuotantolaitoksilta yhä enemmän järjestelmällistä ympäristötiedon hallintaa. LCP- ja jätteenpolttoasetuksen velvoitteet ovat asettaneet uusia vaatimuksia päästöjen valvontaan ja siihen käytettävien mittausjärjestelmien laadunvarmennukseen sekä päästötietojen raportointiin. Uudistukset ovat lisänneet huomattavasti laitoksilla ympäristötiedon käsittelyyn kuluvaa aikaa. Laitosten toimintaehdot määritellään ympäristöviranomaisen myöntämässä ympäristöluvassa, joka on tärkein yksittäinen laitoksen toimintaa ohjaava tekijä. Tämän lisäksi monet toimijat haluavat parantaa ympäristöasioiden tasoaan vapaaehtoisilla ympäristöjärjestelmillä. Tässä diplomityössä kuvataan energiantuotantolaitosten ympäristöasioiden tallentamiseen ja hallintaan kehitetty selainpohjainen Metso Automationin DNAecoDiary'sovellus. Työ on rajattu koskemaan Suomessa toimivia LCP- ja/tai jätteenpolttoasetuksen alaisia laitoksia. Sovelluksen avulla voidaan varmistaa energiantuotantolaitosten poikkeamien, häiriöilmoitusten, päästömittalaitteisiin liittyvien tapahtumien ja muun ympäristöasioiden valvontaan liittyvän informaation tehokas hallinta. Sovellukseen tallennetaan ympäristötapahtumiin liittyvät perustiedot sekä etenkin käyttäjien tapahtumiin liittyvä kokemustietämys. Valvontakirjaukseen voidaan liittää tapahtuman perustietojen lisäksi myös tiedostoja ja kuvia. Sovellusta ja sillä kerättyä tietoa voidaan hyödyntää laitoksella käsilläolevien ongelmien ratkaisuun, ympäristötapahtumien todentamiseen sekä ympäristöraporttien laadintaan. Kehitystyön tueksi järjestettiin asiakastarvekartoitus, jonka perusteella ideoitiin sovelluksen ominaisuuksia. Tässä työssä on esitetty ympäristötiedon hallinan perusteet, selvitetty DNAecoDiaryn toimintaperiaatteet ja annettu esimerkkejä sen hyödyntämisestä. Sovelluksen lopullinen sisältö määritellään kunkin asiakkaan ympäristöluvan ja oma-valvonnan tarpeiden mukaisesti. Sovellus toimii itsenäisesti tai osana laajempaa Metso Automationin päästöjenhallinta- ja raportointisovelluskokonaisuutta.
Resumo:
Jätteenpoltossa syntyvät tuhkat sisältävät paljon haitta-aineita, joiden vuoksi niitä ei yleensä voida suoraan sijoittaa kaatopaikoille. Käsittelyllä pyritään parantamaan tuhkien ominaisuuksia ja vähentämään haitta-aineiden liukoisuutta. Samalla kuitenkin käsittely kuluttaa raaka-aineita ja energiaa sekä aiheuttaa päästöjä. Tuhkien käsittelyn kokonaishyötyjä ja -haittoja ympäristön kannalta arvioitaessa tulisikin ottaa huomioon sekä käsiteltävän tuhkan parantuneet ominaisuudet että käsittelystä aiheutuneet ympäristökuormitukset. Tämän diplomityön tavoitteena oliselvittää jätteenpolton tuhkien käsittelystä aiheutuvia ympäristövaikutuksia tarkastelemalla esimerkinomaisesti neljää erilaista käsittelytekniikkaa (pesua, sementtikiinteytystä, Ferrox-prosessia ja vitrifiointia) sekä kahta muuta loppusijoitusvaihtoehtoa (mahdollisuutta sijoittaa tuhkat kaatopaikalle ilman käsittelyä ja kuljettamista Norjassa sijaitsevalle käsittely- ja loppusijoituslaitokselle). Tarkastelussa keskityttiin jätteenpolton ongelmallisimpiin tuhkajakeisiin, lentotuhkaan ja savukaasujen puhdistusjätteisiin eli APC-jätteisiin. Tavoitteena oli selvittää käsittelyvaihtoehdoista syntyvät ympäristökuormitukset ns. koko niiden elinkaaren ajalta, eli huomioiden käsittelyyn tarvittavien lisäaineiden valmistuksesta, itse käsittelyprosessista sekä loppusijoituksesta aiheutuvat kuormitukset. Tarkastelun perusteella eri käsittelyvaihtoehdot aiheuttavat hyvin erilaisia ja erisuuruisia ympäristökuormituksia. Lisäksi käsitellyn materiaalin ominaisuudet vaihtelevat huomattavasti käsittelytavasta riippuen. Tarkastelluista käsittelyvaihtoehdoista suurimmat ympäristökuormitukset ilmapäästöjen osalta aiheutuivat tyypillisesti joko käsittelyyn tarvittavien raaka-aineiden valmistuksesta tai itse käsittelyprosessin energiankulutuksesta. Loppusijoituksesta sen sijaan aiheutui ympäristöhaittoja kaatopaikkarakenteiden muodostamisesta sekä maaperään vapautuvista haitta-aineista, joiden määrä riippuu tuhkan käsittelyn tehokkuudesta.
Resumo:
Työn tavoitteena oli selvittää Suomenlahdella tapahtuvasta alusöljyvahingosta syntyvän öljyisen jätteen käsittelymahdollisuudet ja -kapasiteetit sekä loppusijoitusmahdollisuudet ja -kapasiteetit Kymenlaakson alueella. Lisäksi tavoitteena oli selvittää, miten öljy-vahinkojätettä voidaan esikäsitellä välivarastoinnin aikana puhdistuksen ja loppusijoituksen tehostamiseksi. Työn alussa on perehdytty öljyvahinkojätteen muodostumiseen vaikuttaviin tekijöihin: öljylaatujen ominaisuuksiin, öljyn kulkeutumiseen rannalle, ranta- ja saaristomaisemaan, öljyntorjuntaan jarantojen puhdistamiseen. Työssä on kuvattu öljyvahinkojätteen käsittelymenetelmien periaatteet ja menetelmien rajoituksia käsitellä öljyvahinkojätettä. Lisäksityö sisältää tutkimusta Suomen aluevesillä ja maailmalla tapahtuneista öljyonnettomuuksista. Onnettomuuksista on selvitetty erityisesti öljyvahinkojätteen määrä, koostumus ja käsittely. Työn loppuosassa on esitelty Kymenlaakson alueen laitosten mahdollisuuksia käsitellä öljyvahinkojätettä. Tietoa onkerätty haastattelemalla puhelimitse laitosten edustajia keväällä 2007. Alueella voidaan polttaa leijupedissä puhtaaseen polttoaineeseen sekoitettua öljyistä orgaanista ainesta ja puhdistustyössä käytettyjä varusteita arviolta 19 000 t/a, homogenoitua öljyistä orgaanista ainesta voidaan polttaa rumpu-uunissa arviolta 1200 t/a. Alueen polttokapasiteetti kasvaa, kun työn aikana rakenteilla oleva jätteenpolttolaitos valmistuu ja jätettä voidaan polttaa laitoksen arinalla. Lisäksi erityisesti öljyisiä maa-aineksia voidaan alipainekäsitellä, bitumistabiloida, kompostoida sekä pestä. Saadut tutkimustulokset ovat hyödynnettävissä erityisesti Kymenlaakson alueella. Tiedot käsittelymenetelmistä ja niiden rajoitteista ovat hyödynnettävissä valtakunnallisesti.
Resumo:
Papinniemi Oy harjoittaa paperiteollisuuskuidun jatkojalostus- ja paperinkeräystoimintaa. Yhteensä raaka-ainetta tulee käsiteltäväksi noin 10 000 t/a. Työn tavoitteena oli uudistaa yhtiön jätelain (1072/1993) 42 §:n mukainen jätelupa hakemalla toiminnalle uusi ympäristönsuojelulain (86/2000)mukainen ympäristölupa. Lupahakemus toimitettiin Kaakkois-Suomen ympäristökeskuksen Lap-peenrannan toimipisteeseen 22.6.2006. Hakemuksen kuulutusajan ja lausuntokierroksen jälkeen ympäristökeskus teki asiasta myönteisen ympäristölupapäätöksen 1.11.2006. Lupapäätöksen kuulu-tusaika on 30 päivää, jonka jälkeen päätös saa lainvoiman, ellei siitä valiteta. Papinniemi Oy:n tulee tehdä hakemus lupamääräysten tarkistamiseksi 30.6.2017 mennessä. Papinniemi Oy aikoo tulevaisuudessa laajentaa toimintaansa energiajakeen vastaanotto- ja kierrä-tyspolttoaineen valmistustoimintaan. Työn toisena tavoitteena oli laatia suunnitelma ja kannatta-vuuslaskelma ko. toiminnan aloittamiseksi. Saatujen tulosten perusteella kierrätyspolttoaineen val-mistus on kannattavaa, mikäli energiajakeen saatavuus Imatran seudulla on vähintään 1700 t/a. Täl-löin yhden kierrätyspolttoainetonnin valmistuskustannus on 90 ¤. Kustannus vastaa edullisimman Imatralla kilpailevaa toimintaa harjoittavan yrityksen energiajakeen vastaanottohintaa. Polttokel-poista jätettä tuottaville yrityksille tehdyn kyselyn perusteella energiajakeen saatavuus Imatran seu-dulla on noin 3000 t/a, jolloin yhden kierrätyspolttoainetonnin valmistuskustannus on 51,49 ¤. Vaikka kierrätyspolttoaineen hinta romahti EU:n jätteenpolttodirektiivin (2000/76/EY) vaatimusten voimaantulon myötä vuoden 2006 alussa, tullee kierrätyspolttoaineen hinta nousemaan lähivuosina takaisin direktiiviä edeltäneelle tasolle (24 ¤/t). Tällöin energiajakeen vastaanottohinta toiminnan kannattavuusrajalla on 27,49 ¤/t. Kierrätyspolttoaineiden käyttöä tulevaisuudessa lisännee muiden polttoaineiden hinnan nousu, meneillään olevakierrätyspolttoaineiden standardisoimistyö, jätteiden hyödyntämisasteen parantamistavoitteet, jätteiden kaatopaikkasijoituskustannusten nousu ja päästö-kaupan vaikutus.
Resumo:
EU:n suurtenpolttolaitosten direktiivi (2001/80/EY) sekä jätteenpolttodirektiivi (2000/76/EY) aiheuttavat lähivuosina oleellisia muutoksia polttolaitosten päästöjen tarkkailuun. Nämä direktiivit on pantu täytäntöön Suomen lainsäädännössä vastaavina asetuksina. Tässä diplomityössä selvitettiin, mitä muutoksia uudistunut lainsäädäntö tuo polttolaitosten päästölaskentaan ja viranomaisraportointiin. Suurimpia muutoksia ovat päästöjen tarkkailujaksojen lyhentyminen, raja-arvojen tulkinnan muuttuminen, häiriö- sekä ylös- ja alasajojaksojen jättäminen pois pitoisuusraja-arvojen tarkkailusta sekä siirtyminen ominaispäästöjen (mg/MJ) laskennasta pitoisuusarvojen (mg/m3n) laskentaan. Päästötietojen raportoinnissa on huomioitava, että ympäristöhallinnon tavoitteena on siirtyä sähköisesti tapahtuvaan tiedonsiirtoon ja kuukausittain tapahtuvaan raportointiin kaikkien tarkkailtavien päästöjenosalta. Uudistunut ympäristölainsäädäntö koskee jo eräitä polttolaitoksia ja lopuillekin uudistuneet vaatimukset astuvat voimaan lähivuosien aikana. LCP-asetuskoskee uusia laitoksia heti, olemassa oleville laitoksille uudet mittausvelvoitteet astuvat voimaan 27.11.2004 ja asetuksen mukaiset raja-arvot 1.1.2008 alkaen. Samoin jätteenpolttoasetus koskee uusia laitoksia heti, käytössä oleville laitoksille se astuu voimaan 29.12.2005. Ensimmäisen ympäristöluvan myöntämisajankohta määrää, luetaanko laitos uusiin vai olemassa tai käytössä oleviin laitoksiin.LCP-asetuksessa uusien ja olemassa olevien laitosten päästöjen tarkkailu poikkeaa hieman toisistaan. Jätteenpoltto- ja rinnakkaispolttolaitoksilla päästöjen tarkkailun toteutustapa puolestaan riippuu poltettavan jätteen laadusta ja sen määrän suhteesta muuhun polttoaineeseen. Lisäksi tämän diplomityöprojektin aikana laadittiin yksityiskohtaiset toteutusohjeet polttolaitoksia koskevan uudistuneen ympäristölainsäädännön mukaiselle päästöjen tarkkailulle ja raportoinnille. Ohjeet laadittiin erikseen LCP- ja jätteenpolttoasetusten soveltamiseksi sekä CO2-päästöjen määrittämistä varten. Ohjeita ei ole sisällytetty tähän työhön, vaan niitä kannattaa tiedustella Kontram Oy:ltä, mikäli niihin halutaan tutustua tarkemmin.
Resumo:
Ydinvoimaloidenprimaarivesikierron puhdistukseen käytetään ioninvaihtohartsia. Käytönjälkeen ioninvaihtohartsi luokitellaan matalaja keskiaktiivisiin jätteisiin. Plasmakäsittelyllä käytetyn ioninvaihtohartsin tilavuutta voidaan pienentää sekä sen orgaaninen luonne poistaa. Plasmakäsittelyn tarkoituksena on hapettaa orgaaninen aines oksideiksi, jotka poistuvat prosessista savukaasuina. Epäorgaaninen aines, joka sisältää radioaktiivisen aineksen, on tarkoitus hapettaa oksideiksi ja sulfideiksi, jotka voidaan kerätä talteen tuhkana. Tässä diplomityössä käsitellään käytetyn ioninvaihtohartsin käsittelyyn suunnitellun plasmapolttoprosessin kehittämistä ja optimointia. Ioninvaihtohartsin plasmakäsittelyssä syntyvien reaktiotuotteiden selvittäminen suoritettiin tarkastelemalla ainetaseita sekä aihetta käsitteleviä tutkimuksia. Näiden perusteella parannettiin jäähdytystä, suunniteltiin jatkuvatoiminen syöttömenetelmä sekä laadittiin toimintaalueen reunaehdot laitteistolle. Koelaitteistossa 6,5 kW:n rfteho syötetään sovitinpiirin ja kuparisen induktiokelan kautta plasmaan. Plasmakaasuna on käytetty hapenja argonin seoskaasua. Plasmapolttoa on seurattu massaspektrometrilla, optisella emissiospektrometrilla, lämpösekä painemittareilla. Laskennan ja kokeiden pohjalta selvitettiin optimaalinen seossuhde plasmakaasulle, paineen ja tehon noston vaikutus hartsin polttonopeuteen sekä jatkuvatoimisen syöttömenetelmän edut panostoimiseen syöttöön. Rfgeneraattorin teho rajoitti jatkuvatoimisen polttonopeuden 130 g/h ja hetkellisen polttonopeuden 175 g/h. Radioaktiivisten aineiden pidätys oli 93,5 % cesiumin osalta. Tulosten perusteella 4 kg/h ioninvaihtohartsia polttavan laitteiston tehon lähteeksi tarvitaan 65 kW rfgeneraattori. Palamattoman hartsin ja tuhkan kulkeutuminen partikkelisuodattimille sekä reaktiotuotteena syntyvien rikinoksidien käsittely vaatii vielä jatkotutkimusta.
Resumo:
Työn tavoitteena on ollutselvittää kustannukset, joita syntyy, jos Kuusankosken kaupungin puhdistamolta johdetaan jätevedet UPM-Kymmene Oyj:n Kymin aktiivilietelaitokselle puhdistettaviksi, ja kustannukset, joita aiheutuu kaupungin puhdistamon laajentamisesta typenpoistoon sopivaksi sekä verrata näiden hankkeiden kustannuksia. Työssä selvitetään myös muutokset, joita yhteispuhdistukseen siirtymisestä aiheutuu Kymin aktiivilietelaitokselle ja miten jätevesikuormitus Kymijokeen muuttuu. Lisäksi työssäon tarkasteltu yhdyskuntajätevedenpuhdistamoilta tuotujen lietteiden vaikutustaKymin aktiivilietelaitoksen toimintaan ja luotu katsaus käytössä olevien metsäteollisuusyritysten ja kaupunkien yhteispuhdistamojen toimintaan Raumalla ja Grand Rapids:ssa. Yhdyskuntajätevesien yhteispuhdistuksesta sellu- ja paperitehtaan aktiivilietelaitoksessa on saatu hyviä kokemuksia Raumalta. Kokonaistyppikuormitus Rauman merialueelle on puolittunut ja lisäksi fosfori- ja BOD-kuormitukset ovat vähentyneet. Ravinteiden tarve puhdistamolla on kuitenkin ennakoitua suurempija ravinteiden kulutusta voidaan selittää monella tekijällä mm. lämpötilan laskulla ja lietekuorman lisääntymisellä. Kymin puhdistamolle on tuotu Akanojan puhdistamon ylijäämäliete vuodesta 1996 lähtien. Vuoden 2004 marras- ja joulukuussa suoritetussa kokeilussa Kymin puhdistamolle tuotiin Akanojan lietteiden lisäksi osa Kouvolan puhdistamolla syntyneistä lietteistä. Kokeilun perusteella voidaan todeta, että yhdyskuntajätevesilietteiden tuonnilla voidaan korvata puhdistamolla tarvittavia ravinteita. Uusi jätteenpolttodirektiivi tuskin aiheuttanee ongelmia poltettaessa voimalaitoksella ylijäämälietettä, joka sisältää myös yhdyskuntajätevesistä peräisin olevaa lietettä. Kymin aktiivilietelaitoksen lämpötila tulee laskemaan yhteispuhdistukseen siirryttäessä viileiden yhdyskuntajätevesien vaikutuksesta. Yhteispuhdistustilanteessa Kuusankosken keskustan jokialueen bakteeritilanteeseen ei ole todennäköisesti tulossa muutosta, mutta virustilanteen muuttuminen voi olla mahdollista. Yhteispuhdistukseen siirryttäessä Kymin puhdistamon kapasiteettia tarvitsee kasvattaa ainoastaan jälkiselkeytyksen suhteen. Yhteispuhdistustilanteessa jätevesikuormitus Kymijokeen tulee pienenemään erityisesti typen osalta ja myös BOD- ja fosforikuormat pienenevät. COD-kuormitus pysyy lähes ennallaan ja kiintoainekuorma saattaa lisääntyä hiukan. Yhteispuhdistustilanteessa Kymijokeen aiheutuu jätevesikuormitusta myös ohituksista, kun yhdyskuntajätevesimäärä ylittää hetkellisesti esimerkiksi rankkasateen sattuessa mitoitusvirtaamansa arvon. Investointikustannukseksi, Kuusankosken kaupungin puhdistamon muuttamisesta typenpoistoon sopivaksi, arvioitiin mitoitusvirtaamasta riippuen 3 210 000 ¤ tai 2 460 000 ¤. Yhteispuhdistukseen siirtyminen aiheuttaa kaupungille n. 3 755 000 ¤ investointikustannuksen ja Kymin puhdistamolle n. 365 000 ¤. Investointikustannuksiltaan yhteispuhdistukseen siirtyminen tulee kaupungille kalliimmaksi mutta pitkällä aikavälillä tarkasteltuna edullisempi vaihtoehto Kuusankosken kaupungin kannalta on siirtyminen yhteispuhdistukseen.
Resumo:
EU:n polttodirektiivit, LCP- ja jätteenpolttodirektiivi ovat arkipäivää suuressa osassa polttolaitoksia Suomessakin lähivuosien kuluessa. Molemmat direktiivit on otettu mukaan Suomen lain-säädäntöön asetuksina, joita on hieman muutettu vastaamaan kansallisia tarpeita. Polttolaitokset tulevat muuttamaan aikaisempia käytäntöjään päästöistä mitattavien komponenttien sekä tarkkailujaksojen että raportoinnin osalta. Mittausten tulokset raportoidaan jatkossa yksikössä mg/Nm3. Jatkuvatoimisia mittausjärjestelmiä on asennettava yhä useampaan laitokseen ja savukaasuista tarkkaillaan pitoisuuksia päästöjen sijaan. Edelleen raportoidaan esim. ympäristölupaviranomaiselle vuosipäästöjen suuruus. Vuonna 2000 voimaan tulleen ympäristönsuojelulain ja -asetuksen velvoittamina toiminnassa olevat sellutehtaat ovat hakeneet uuden lain mukaista ympäristölupaa vuoden 2004 loppuun mennessä. Ympäristöluvan tarvitsevat myös kaikki teholtaan yli 50 MW:n polttolaitokset. Suuria polttolaitoksia koskeva LCP-direktiivi astuu voimaan vuoden 2008 alussa. Siksi uusissa ympäristöluvissa tullaantodennäköisesti vaatimaan myös sellutehtailta ko. direktiivin mukaisia mittaus-järjestelmiä ja päästörajoja. Laitoksissa on jo nyt melko kattavat päästömittausjärjestelmät, sillä myös voimassaolevat ympäristöluvat ja ilmapäästöjen tarkkailuohjelmat velvoittavat päästöjen jatkuvaan seurantaan pääosin samoista savukaasukomponenteista kuin mitä direktiivissäkin edellytetään. Tässä diplomityössä keskitytään LCP- ja jätteenpolttodirektiivien mittausvaatimuksiin, raja-arvoihin sekä raportointiin sekä Metsä-Botnian sellutehtaiden mittausjärjestelmien parantamis-toimenpiteisiin. Yksityiskohtainen toimintamalli on tehty Joutsenon tehtaan laitosta ja mittaus-järjestelmää silmällä pitäen. Sitä voidaan käyttää myös muillatehtailla mallina savukaasupäästöjen mittauksien ja laitteiden päivitysten yhteydessä. Toimintamalliin siirtyminen ei velvoita Metsä-Botnian tehtaita, mutta monet tehtaat haluavat laitteistokannan uusimisen yhteydessä siirtyä direktiivien vaatimuksia vastaavaan järjestelmään.
Resumo:
Environmentally harmful consequences of fossil fuel utilisation andthe landfilling of wastes have increased the interest among the energy producers to consider the use of alternative fuels like wood fuels and Refuse-Derived Fuels, RDFs. The fluidised bed technology that allows the flexible use of a variety of different fuels is commonly used at small- and medium-sized power plants ofmunicipalities and industry in Finland. Since there is only one mass-burn plantcurrently in operation in the country and no intention to build new ones, the co-firing of pre-processed wastes in fluidised bed boilers has become the most generally applied waste-to-energy concept in Finland. The recently validated EU Directive on Incineration of Wastes aims to mitigate environmentally harmful pollutants of waste incineration and co-incineration of wastes with conventional fuels. Apart from gaseous flue gas pollutants and dust, the emissions of toxic tracemetals are limited. The implementation of the Directive's restrictions in the Finnish legislation is assumed to limit the co-firing of waste fuels, due to the insufficient reduction of the regulated air pollutants in the existing flue gas cleaning devices. Trace metals emission formation and reduction in the ESP, the condensing wet scrubber, the fabric filter, and the humidification reactor were studied, experimentally, in full- and pilot-scale combustors utilising the bubbling fluidised bed technology, and, theoretically, by means of reactor model calculations. The core of the model is a thermodynamic equilibrium analysis. The experiments were carried out with wood chips, sawdust, and peat, and their refuse-derived fuel, RDF, blends. In all, ten different fuels or fuel blends were tested. Relatively high concentrations of trace metals in RDFs compared to the concentrations of these metals in wood fuels increased the trace metal concentrations in the flue gas after the boiler ten- to hundred-folds, when RDF was co-fired with sawdust in a full-scale BFB boiler. In the case of peat, lesser increase in trace metal concentrations was observed, due to the higher initial trace metal concentrations of peat compared to sawdust. Despite the high removal rate of most of the trace metals in the ESP, the Directive emission limits for trace metals were exceeded in each of the RDF co-firing tests. The dominat trace metals in fluegas after the ESP were Cu, Pb and Mn. In the condensing wet scrubber, the flue gas trace metal emissions were reduced below the Directive emission limits, whenRDF pellet was used as a co-firing fuel together with sawdust and peat. High chlorine content of the RDFs enhanced the mercuric chloride formation and hence the mercury removal in the ESP and scrubber. Mercury emissions were lower than theDirective emission limit for total Hg, 0.05 mg/Nm3, in all full-scale co-firingtests already in the flue gas after the ESP. The pilot-scale experiments with aBFB combustor equipped with a fabric filter revealed that the fabric filter alone is able to reduce the trace metal concentrations, including mercury, in the flue gas during the RDF co-firing approximately to the same level as they are during the wood chip firing. Lower trace metal emissions than the Directive limits were easily reached even with a 40% thermal share of RDF co-firing with sawdust.Enrichment of trace metals in the submicron fly ash particle fraction because of RDF co-firing was not observed in the test runs where sawdust was used as the main fuel. The combustion of RDF pellets with peat caused an enrichment of As, Cd, Co, Pb, Sb, and V in the submicron particle mode. Accumulation and release oftrace metals in the bed material was examined by means of a bed material analysis, mass balance calculations and a reactor model. Lead, zinc and copper were found to have a tendency to be accumulated in the bed material but also to have a tendency to be released from the bed material into the combustion gases, if the combustion conditions were changed. The concentration of the trace metal in the combustion gases of the bubbling fluidised bed boiler was found to be a summary of trace metal fluxes from three main sources. They were (1) the trace metal flux from the burning fuel particle (2) the trace metal flux from the ash in the bed, and (3) the trace metal flux from the active alkali metal layer on the sand (and ash) particles in the bed. The amount of chlorine in the system, the combustion temperature, the fuel ash composition and the saturation state of the bed material in regard to trace metals were discovered to be key factors affecting therelease process. During the co-firing of waste fuels with variable amounts of e.g. ash and chlorine, it is extremely important to consider the possible ongoingaccumulation and/or release of the trace metals in the bed, when determining the flue gas trace metal emissions. If the state of the combustion process in regard to trace metals accumulation and/or release in the bed material is not known,it may happen that emissions from the bed material rather than the combustion of the fuel in question are measured and reported.