30 resultados para FUNDAMENTAL FREQUENCY
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Työssä tarkastellaan olemassa olevan suoraa vääntömomentin säätöä käyttävän taajuudenmuuttajan soveltamista keskitaajuusalueella toimiviin induktiomoottorikäyttöihin. Keskinopeusalueen sovellusten pyörimisnopeudet ovat tyypillisesti 6000…30000rpm. Tällöin invertterin lähtötaajuuden on nelinapaista moottoria ohjattaessa ulotuttava 1000Hz:iin. ABB:n ACS600 taajuudenmuuttajan nykyinen syöttötaajuus ulottuu noin 400Hz:iin ja sen keskimääräinen kytkentätaajuus on luokkaa 3kHz. Taajuudenmuuttajan keskimääräistä kytkentätaajuutta ei haluta tästä merkittävästi nostaa, koska tällöin pääteasteen mitoitusta ja rakennetta on muutettava. Tarkastelussa keskitytään täten jännitemodulointiin, joka määrittelee invertterin lähtöjännitteen käyrämuodon ja pääteasteen tehokytkimien kytkentätaajuuden. Työssä esitetään suoran käämivuon säädön periaatetta soveltava 30-kulmainen modulointimenetelmä (30-modulointi), jolla moottorin syöttövirrasta voidaan eliminoida 5. ja 7. yliharmoninen komponentti. Yliharmonisten komponenttien eliminointi mahdollistaa passiivisilla komponenteilla toteutetun alipäästösuodattimen asentamisen invertterin lähtöön, jolloin moottorissa tapahtuvat tehohäviöt saadaan pieniksi. 30-moduloinnin ohjaukseen ja säätöön esitetään menetelmät, jotka mahdollistavat sen toteuttamisen nykyiseen taajuudenmuuttajaan ohjelmallisesti ilman suuria laitteistomuutoksia. 30-moduloinnin ominaisuuksia tarkastellaan analyyttisin menetelmin ja sen toimintaa testataan esitettyjen teorioiden perusteella simuloimalla. 30-moduloinnin ohjelmallinen implementointi nykyiseen ACS600:een mahdollistaa periaatteessa noin 600Hz:n syöttötaajuuden saavuttamisen. Tällöin invertterin keskimääräinen kytkentätaajuus voidaan säätää koko pyörimisnopeusalueella alle 4kHz:n tasolle.
Resumo:
Electric motors driven by adjustable-frequency converters may produce periodic excitation forces that can cause torque and speed ripple. Interaction with the driven mechanical system may cause undesirable vibrations that affect the system performance and lifetime. Direct drives in sensitive applications, such as elevators or paper machines, emphasize the importance of smooth torque production. This thesis analyses the non-idealities of frequencyconverters that produce speed and torque ripple in electric drives. The origin of low order harmonics in speed and torque is examined. It is shown how different current measurement error types affect the torque. As the application environment, direct torque control (DTC) method is applied to permanent magnet synchronous machines (PMSM). A simulation model to analyse the effect of the frequency converter non-idealities on the performance of the electric drives is created. Themodel enables to identify potential problems causing torque vibrations and possibly damaging oscillations in electrically driven machine systems. The model is capable of coupling with separate simulation software of complex mechanical loads. Furthermore, the simulation model of the frequency converter's control algorithm can be applied to control a real frequency converter. A commercial frequencyconverter with standard software, a permanent magnet axial flux synchronous motor and a DC motor as the load are used to detect the effect of current measurement errors on load torque. A method to reduce the speed and torque ripple by compensating the current measurement errors is introduced. The method is based on analysing the amplitude of a selected harmonic component of speed as a function oftime and selecting a suitable compensation alternative for the current error. The speed can be either measured or estimated, so the compensation method is applicable also for speed sensorless drives. The proposed compensation method is tested with a laboratory drive, which consists of commercial frequency converter hardware with self-made software and a prototype PMSM. The speed and torque rippleof the test drive are reduced by applying the compensation method. In addition to the direct torque controlled PMSM drives, the compensation method can also beapplied to other motor types and control methods.
Resumo:
Latinalaisen Amerikan osuus maailmantaloudesta on pieni verrattuna sen maantieteelliseen kokoon, väkilukuun ja luonnonvaroihin. Aluetta pidetään kuitenkin yhtenä tulevaisuuden merkittävistä kasvumarkkinoista. Useissa Latinalaisen Amerikan maissa on teollisuutta, joka hyödyntää luonnonvaroja ja tuottaa raaka-aineita sekä kotimaan että ulkomaiden markkinoille. Tällaisia tyypillisiä teollisuudenaloja Latinalaisessa Amerikassa ovat kaivos- ja metsäteollisuus sekä öljyn ja maakaasun tuotanto. Näiden teollisuudenalojen tuotantolaitteiden ja koneiden valmistusta ei Latinalaisessa Amerikassa juurikaan ole. Ne tuodaan yleensä Pohjois-Amerikasta ja Euroopasta. Tässä diplomityössä tutkitaan sähkömoottorien ja taajuusmuuttajien markkinapotentiaalia Latinalaisessa Amerikassa. Tutkimuksessa perehdytään Latinalaisen Amerikan maiden kansantalouksien tilaan sekä arvioidaan sähkömoottorien ja taajuusmuuttajien markkinoiden kokoa tullitilastojen avulla. Chilen kaivosteollisuudessa arvioidaan olevan erityistä potentiaalia. Diplomityössä selvitetään ostoprosessin kulkua Chilen kaivosteollisuudessa ja eri asiakastyyppien roolia siinä sekä tärkeimpiä päätöskriteerejä toimittaja- ja teknologiavalinnoissa.
Resumo:
The work aims to analyze the possibilities of utilizing old crane driving AC induction motors in modern pulse-width-modulated variable frequency drives. Bearing currents and voltage stresses are the two main problems associated with modern IGBT inverters, and they may cause premature failure of an old induction motor. The origins of these two problems are studied. An analysis of the mechanism of bearing failure is proposed. Certain types of bearing currents are considered in detail. The most effective and economical means are chosen for bearing currents mitigation. Transient phenomena of cables and mechanism of over voltages occurring at motor terminals are studied in the work. The weakest places of the stator winding insulation system are shown and recommendations are given considering the mitigation of voltage stresses. Only the most appropriate and cost effective preventative methods are chosen for old motor drives. Rewinding of old motors is also considered.
Resumo:
The paper industry has been experiencing remarkable structural changes since paper demand growth has ceased and some markets are declining. One reason behind the declined demand is the Internet, which has partially substituted the newspaper as a source of information. Paper products alone can no longer provide livelihood, and the paper industry has to find new business areas. In this research, we studied radio frequency identification (RFID), and the market opportunities it could provide for paper industry. The research combined a quantitative industry analysis and qualitative interviews. RFID is a growing industry in the beginning of its life cycle, in which value chains and technologies still evolve significantly. The industry is going to concentrate on the future, and in the long term RFID-identifiers will probably be printed on paper substrate or directly onto products. Paper industry has the chance to enter the RFID industry, but it has to obtain the required competences, for example through acquisitions. The business potential RFID offers to paper industry is inadequate, and while reviewing new strategic options, the paper industry must consider more options, for example the entire printed intelligence.
Resumo:
Induction motors are widely used in industry, and they are generally considered very reliable. They often have a critical role in industrial processes, and their failure can lead to significant losses as a result of shutdown times. Typical failures of induction motors can be classified into stator, rotor, and bearing failures. One of the reasons for a bearing damage and eventually a bearing failure is bearing currents. Bearing currents in induction motors can be divided into two main categories; classical bearing currents and inverter-induced bearing currents. A bearing damage caused by bearing currents results, for instance, from electrical discharges that take place through the lubricant film between the raceways of the inner and the outer ring and the rolling elements of a bearing. This phenomenon can be considered similar to the one of electrical discharge machining, where material is removed by a series of rapidly recurring electrical arcing discharges between an electrode and a workpiece. This thesis concentrates on bearing currents with a special reference to bearing current detection in induction motors. A bearing current detection method based on radio frequency impulse reception and detection is studied. The thesis describes how a motor can work as a “spark gap” transmitter and discusses a discharge in a bearing as a source of radio frequency impulse. It is shown that a discharge, occurring due to bearing currents, can be detected at a distance of several meters from the motor. The issues of interference, detection, and location techniques are discussed. The applicability of the method is shown with a series of measurements with a specially constructed test motor and an unmodified frequency-converter-driven motor. The radio frequency method studied provides a nonintrusive method to detect harmful bearing currents in the drive system. If bearing current mitigation techniques are applied, their effectiveness can be immediately verified with the proposed method. The method also gives a tool to estimate the harmfulness of the bearing currents by making it possible to detect and locate individual discharges inside the bearings of electric motors.
Resumo:
Controlling the quality variables (such as basis weight, moisture etc.) is a vital part of making top quality paper or board. In this thesis, an advanced data assimilation tool is applied to the quality control system (QCS) of a paper or board machine. The functionality of the QCS is based on quality observations that are measured with a traversing scanner making a zigzag path. The basic idea is the following: The measured quality variable has to be separated into its machine direction (MD) and cross direction (CD) variations due to the fact that the QCS works separately in MD and CD. Traditionally this is done simply by assuming one scan of the zigzag path to be the CD profile and its mean value to be one point of the MD trend. In this thesis, a more advanced method is introduced. The fundamental idea is to use the signals’ frequency components to represent the variation in both CD and MD. To be able to get to the frequency domain, the Fourier transform is utilized. The frequency domain, that is, the Fourier components are then used as a state vector in a Kalman filter. The Kalman filter is a widely used data assimilation tool to combine noisy observations with a model. The observations here refer to the quality measurements and the model to the Fourier frequency components. By implementing the two dimensional Fourier transform into the Kalman filter, we get an advanced tool for the separation of CD and MD components in total variation or, to be more general, for data assimilation. A piece of a paper roll is analyzed and this tool is applied to model the dataset. As a result, it is clear that the Kalman filter algorithm is able to reconstruct the main features of the dataset from a zigzag path. Although the results are made with a very short sample of paper roll, it seems that this method has great potential to be used later on as a part of the quality control system.
Resumo:
The aim of the thesis is to investigate the hybrid LC filter behavior in modern power drives; to analyze the influence of such a du/dt filter on the control system stability. With the implementation of the inverter output RLC filter the motor control becomes more complicated. And during the design process the influence of the filter on the motor should be considered and the filter RLC parameters should be constrained.
Resumo:
This master’s thesis is focused on power supply network disturbances and their effects on the frequency converter – one of the components of modern process crane electrical system. The most critical disturbance types, their causes and the effect they bring to crane electrical system was determined in this work. Variety of protective devices used for mitigation of disturbances is investigated. Device protection solutions for the frequency converter used in crane applications are presented. Analyses of the power supply requirements for frequency converter and various components of crane electrical system were carried out and as a result the crane power supply requirements list that guarantees normal crane operation was built. This list is to be included in crane projects for troubleshooting purposes in order to determine potentially dangerous network.
Resumo:
The increasing power demand and emerging applications drive the design of electrical power converters into modularization. Despite the wide use of modularized power stage structures, the control schemes that are used are often traditional, in other words, centralized. The flexibility and re-usability of these controllers are typically poor. With a dedicated distributed control scheme, the flexibility and re-usability of the system parts, building blocks, can be increased. Only a few distributed control schemes have been introduced for this purpose, but their breakthrough has not yet taken place. A demand for the further development offlexible control schemes for building-block-based applications clearly exists. The control topology, communication, synchronization, and functionality allocationaspects of building-block-based converters are studied in this doctoral thesis. A distributed control scheme that can be easily adapted to building-block-based power converter designs is developed. The example applications are a parallel and series connection of building blocks. The building block that is used in the implementations of both the applications is a commercial off-the-shelf two-level three-phase frequency converter with a custom-designed controller card. The major challenge with the parallel connection of power stages is the synchronization of the building blocks. The effect of synchronization accuracy on the system performance is studied. The functionality allocation and control scheme design are challenging in the seriesconnected multilevel converters, mainly because of the large number of modules. Various multilevel modulation schemes are analyzed with respect to the implementation, and this information is used to develop a flexible control scheme for modular multilevel inverters.
Resumo:
Centrifugal pumps are widely used in industrial and municipal applications, and they are an important end-use application of electric energy. However, in many cases centrifugal pumps operate with a significantly lower energy efficiency than they actually could, which typically has an increasing effect on the pump energy consumption and the resulting energy costs. Typical reasons for this are the incorrect dimensioning of the pumping system components and inefficiency of the applied pump control method. Besides the increase in energy costs, an inefficient operation may increase the risk of a pump failure and thereby the maintenance costs. In the worst case, a pump failure may lead to a process shutdown accruing additional costs. Nowadays, centrifugal pumps are often controlled by adjusting their rotational speed, which affects the resulting flow rate and output pressure of the pumped fluid. Typically, the speed control is realised with a frequency converter that allows the control of the rotational speed of an induction motor. Since a frequency converter can estimate the motor rotational speed and shaft torque without external measurement sensors on the motor shaft, it also allows the development and use of sensorless methods for the estimation of the pump operation. Still today, the monitoring of pump operation is based on additional measurements and visual check-ups, which may not be applicable to determine the energy efficiency of the pump operation. This doctoral thesis concentrates on the methods that allow the use of a frequency converter as a monitoring and analysis device for a centrifugal pump. Firstly, the determination of energy-efficiency- and reliability-based limits for the recommendable operating region of a variable-speed-driven centrifugal pump is discussed with a case study for the laboratory pumping system. Then, three model-based estimation methods for the pump operating location are studied, and their accuracy is determined by laboratory tests. In addition, a novel method to detect the occurrence of cavitation or flow recirculation in a centrifugal pump by a frequency converter is introduced. Its sensitivity compared with known cavitation detection methods is evaluated, and its applicability is verified by laboratory measurements for three different pumps and by using two different frequency converters. The main focus of this thesis is on the radial flow end-suction centrifugal pumps, but the studied methods can also be feasible with mixed and axial flow centrifugal pumps, if allowed by their characteristics.