20 resultados para Environmental Site Design
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Tärkeänä osana Internet-sivujen toteutusta on niiden huolellinen suunnittelu. Käyttöliittymäsuunnittelun työvälineinä Internet-sivujen toteuttamisessa käytetään apuna hahmotelmia ja erilaisia prototyyppejä. Näiden avulla sivuston suunnitelmaa selkeytetään yhteistyössä asiakkaan ja tulevien käyttäjien kanssa. Tässä diplomityössä toteutetaan komponenttikirjasto verkkosivujen suunnitteluun Uoma Oy nimiselle yritykselle. Kirjastoon tulevia komponentteja kartoitetaan analysoimalla toteutettuja projekteja. Työssä myös selvitetään komponenttien laatukriteerit ja toteutetaan kirjaston komponentit. Kirjaston laatua ja tehokkuutta arvioidaan toteuttamalla mallisivusto. Työ osoittaa, että käyttämällä kirjastoa saadaan sekä laadullista hyötyä että parannetaan tehokkuutta, verrattuna yrityksessä aiemmin käytettyyn tapaan työskennellä. Kirjastoa voidaan käyttää monipuolisesti eri suunnitteluvaiheiden tarpeisiin.
Resumo:
Diplomityö muodostuu kahdesta kokonaisuudesta. Työn teoriaosa kertoo mitä ympäristöjohtaminen on, millaisia ovat multi-site -organisaatio ja multi-site -johtamisjärjestelmä sekä mitä vaatimuksia nämä asettavat yritykselle. Työssä esitetään malli, jota käyttämällä kansainvälisten johtamisjärjestelmästandardien mukaan rakennetut laatu-, ympäristö-, terveys- ja turvallisuusjärjestelmät voidaan yhdistää yhdeksi kokonaisuudeksi, multi-site - johtamisjärjestelmäksi. Malli rakentuu kolmesta tasosta, joita ovat paikallinen, maakohtainen ja konsernitaso. Esimerkkien avulla kerrotaan miteneri lähtökohdista voidaan näiden tasojen kautta edetä kohti yhtä johtamiskokonaisuutta. Esille tuodaan myös multi-site -johtamisjärjestelmän käyttöönottoa puoltavat ja vastustavat näkökohdat. Työn konkreettinen osa on johtamisjärjestelmämallin paikallisen tason toteuttaminen. Ympäristöjohtamisjärjestelmän rakentaminen standardin EN ISO 14001:2004 vaatimusten mukaiseksi Kvaerner Power Oy:n Suomen toimipaikoille sekä tämän järjestelmän yhdistäminen sertifioituun EN ISO 9001 -standardin mukaiseen laatujärjestelmään. Työssä kerrotaan miten ympäristöjohtamisjärjestelmä on rakennettu ja miten laatu- ja ympäristöjärjestelmät on liitetty yhdeksi kokonaisuudeksi. Työn tuloksena syntyi malli johtamisjärjestelmien yhdistämisestä sekä sertifioitu ympäristöjohtamisjärjestelmä, jonka yhdistäminen laatujärjestelmään toteutettiin tavoitteiden mukaisesti.
Resumo:
The solid-rotor induction motor provides a mechanically and thermally reliable solution for demanding environments where other rotor solutions are prohibited or questionable. Solid rotors, which are manufactured of single pieces of ferromagnetic material, are commonly used in motors in which the rotationspeeds exceed substantially the conventional speeds of laminated rotors with squirrel-cage. During the operation of a solid-rotor electrical machine, the rotor core forms a conductor for both the magnetic flux and the electrical current. This causes an increase in the rotor resistance and rotor leakage inductance, which essentially decreases the power factor and the efficiency of the machine. The electromagnetic problems related to the solid-rotor induction motor are mostly associated with the low performance of the rotor. Therefore, the main emphasis in this thesis is put on the solid steel rotor designs. The rotor designs studied in thisthesis are based on the fact that the rotor construction should be extremely robust and reliable to withstand the high mechanical stresses caused by the rotational velocity of the rotor. In addition, the demanding operation environment sets requirements for the applied materials because of the high temperatures and oxidizing acids, which may be present in the cooling fluid. Therefore, the solid rotors analyzed in this thesis are made of a single piece of ferromagnetic material without any additional parts, such as copper end-rings or a squirrel-cage. A pure solid rotor construction is rigid and able to keep its balance over a large speed range. It also may tolerate other environmental stresses such as corroding substances or abrasive particles. In this thesis, the main target is to improve the performance of an induction motor equipped with a solid steel rotor by traditional methods: by axial slitting of the rotor, by selecting a proper rotor core material and by coating the rotor with a high-resistive stainless ferromagnetic material. In the solid steel rotor calculation, the rotor end-effects have a significant effect on the rotor characteristics. Thus, the emphasis is also put on the comparison of different rotor endfactors. In addition, a corrective slip-dependent end-factor is proposed. The rotor designs covered in this thesis are the smooth solid rotor, the axially slitted solid rotor and the slitted rotor having a uniform ferromagnetic coating cylinder. The thesis aims at design rules for multi-megawatt machines. Typically, mega-watt-size solidrotor machines find their applications mainly in the field of electric-motor-gas-compression systems, in steam-turbine applications, and in various types of largepower pump applications, where high operational speeds are required. In this thesis, a 120 kW, 10 000 rpm solid-rotor induction motor is usedas a small-scale model for such megawatt-range solid-rotor machines. The performance of the 120 kW solid-rotor induction motors is determined by experimental measurements and finite element calculations.
Resumo:
Työn tarkoituksena on selvittää, miten käyttötietämystä hyödynnetään prosessisuunnittelussa. Tavoitteena on löytää keinoja parantaa käyttötietämyksen hallintaa suunnitteluprosessin aikana ja selvittää, vaikuttaako tämä prosessisuunnittelun laatuun.Prosessisuunnittelun laatua arvioidaan seitsemällä kriteerillä, jotka ovat investointikustannukset, käyttökustannukset, turvallisuus, ympäristövaikutukset, käytettävyys, innovatiivisuus ja aikataulu. Suunnitteluprosessi jaetaan kolmeen vaiheeseen: esisuunnitteluun, perussuunnitteluun ja detaljisuunnitteluun. Prosessisuunnittelua, investointiprojektia, prosessisuunnittelun laatukriteerejä, suunnitteluprosessin eri vaiheita ja käyttötietämyksen luokittelua tarkastellaan yleisesti. Työssä selvitettiin käyttötietämyksen hyödyntämistä Kemiralla. Aluksi muotoiltiin yleisiä väittämiä käyttötietämyksen hyödyntämisestä Kemiran ulkopuolisten eri alojen asiantuntijoiden haastattelujen perusteella. Tämän jälkeen Kemiran prosessisuunnittelijat arvioivat väittämiä. Arvioiden perusteella tehtiin johtopäätöksiä yleisesti käyttötietämyksen hyödyntämisestä prosessisuunnittelussa. Seuraavaksi haastateltiin kahdessa erityyppisessä case-projektissa mukana olleita henkilöitä ja muotoiltiin yleiset väittämät näihin projekteihin sopiviksi. Projekteissa mukana olleet henkilöt arvioivat väittämiä, ja näiden arvioiden perusteella projekteja vertailtiin keskenään. Lopussa esitetään johtopäätökset kaikkien väittämien arvioiden perusteella. Johtopäätöksenä voidaan todeta, että käyttötietämystä voidaan hyödyntää kaikissa suunnittelun vaiheissa, mutta paras hyöty saadaan perus- ja detaljisuunnittelussa. Käyttötietämyksellä voidaan vaikuttaa joihinkin prosessisuunnittelun laatukriteereihin, kuten esimerkiksi käytettävyyteen ja turvallisuuteen enemmän kuin muihin. Kemiralle suositellaan nykyisten tiedonhallintamenetelmien kehittämistä, jotta käyttötietämyksen saatavuus ja sen siirtäminen paranisi. Pr
Resumo:
Low quality mine drainage from tailings facilities persists as one of the most significant global environmental concerns related to sulphide mining. Due to the large variation in geological and environmental conditions at mine sites, universal approaches to the management of mine drainage are not always applicable. Instead, site-specific knowledge of the geochemical behaviour of waste materials is required for the design and closure of the facilities. In this thesis, tailings-derived water contamination and factors causing the pollution were investigated in two coeval active sulphide mine sites in Finland: the Hitura Ni mine and the Luikonlahti Cu-Zn-Co-Ni mine and talc processing plant. A hydrogeochemical study was performed to characterise the tailingsderived water pollution at Hitura. Geochemical changes in the Hitura tailings were evaluated with a detailed mineralogical and geochemical investigation (solid-phase speciation, acid mine drainage potential, pore water chemistry) and using a spatial assessment to identify the mechanisms of water contamination. A similar spatial investigation, applying selective extractions, was carried out in the Luikonlahti tailings area for comparative purposes (Hitura low-sulphide tailings vs. Luikonlahti sulphide-rich tailings). At both sites, hydrogeochemistry of tailings seepage waters was further characterised to examine the net results of the processes observed within the impoundments and to identify constraints for water treatment. At Luikonlahti, annual and seasonal variation in effluent quality was evaluated based on a four-year monitoring period. Observations pertinent to future assessment and mine drainage prevention from existing and future tailings facilities were presented based on the results. A combination of hydrogeochemical approaches provided a means to delineate the tailings-derived neutral mine drainage at Hitura. Tailings effluents with elevated Ni, SO4 2- and Fe content had dispersed to the surrounding aquifer through a levelled-out esker and underneath the seepage collection ditches. In future mines, this could be avoided with additional basal liners in tailings impoundments where the permeability of the underlying Quaternary deposits is inadequate, and with sufficiently deep ditches. Based on the studies, extensive sulphide oxidation with subsequent metal release may already initiate during active tailings disposal. The intensity and onset of oxidation depended on e.g. the Fe sulphide content of the tailings, water saturation level, and time of exposure of fresh sulphide grains. Continuous disposal decreased sulphide weathering in the surface of low-sulphide tailings, but oxidation initiated if they were left uncovered after disposal ceased. In the sulphide-rich tailings, delayed burial of the unsaturated tailings had resulted in thick oxidized layers, despite the continuous operation. Sulphide weathering and contaminant release occurred also in the border zones. Based on the results, the prevention of sulphide oxidation should already be considered in the planning of tailings disposal, taking into account the border zones. Moreover, even lowsulphide tailings should be covered without delay after active disposal ceases. The quality of tailings effluents showed wide variation within a single impoundment and between the two different types of tailings facilities assessed. The affecting factors included source materials, the intensity of weathering of tailings and embankment materials along the seepage flow path, inputs from the process waters, the water retention time in tailings, and climatic seasonality. In addition, modifications to the tailings impoundment may markedly change the effluent quality. The wide variation in the tailings effluent quality poses challenges for treatment design. The final decision on water management requires quantification of the spatial and seasonal fluctuation at the site, taking into account changes resulting from the eventual closure of the impoundment. Overall, comprehensive hydrogeochemical mapping was deemed essential in the identification of critical contaminants and their sources at mine sites. Mineralogical analysis, selective extractions, and pore water analysis were a good combination of methods for studying the weathering of tailings and in evaluating metal mobility from the facilities. Selective extractions with visual observations and pH measurements of tailings solids were, nevertheless, adequate in describing the spatial distribution of sulphide oxidation in tailings impoundments. Seepage water chemistry provided additional data on geochemical processes in tailings and was necessary for defining constraints for water treatment.
Resumo:
The mobile networks of earlier and current generations, or 2G and 3G networks, provide users voice and packet services with higher transmission rates and good quality over the same core network. When developing the next generation of mobile networks the current quality of services needs to be maintained. This thesis concentrates on the next generation mobile network, especially on the evolution of the packet network part. The new mobile network has requirements for the common packet backbone network, Mobile Packet Backbone Network, which is additionally discussed in this study. The next generation mobile network, called LTE/SAE, is currently under testing. The test system is called Container Trial System. It is a mini sized LTE/SAE site. The LTE/SAE is studied in this thesis concentrating on the evolved packet core, the SAE part of the composition. The empirical part of the study compares the LTE/SAE Container Trial System and commercial network designs and additionally produces documentation for internal personnel and customers. The research is performed by comparing the documentations and specifications of both the Container Trial System and commercial network. Since the LTE commercial network is not yet constructed, the comparison is done theoretically. The purpose is furthermore to find out if there are any design issues that could be done differently in the next version of the Container Trial System.
Resumo:
In the theoretical part, the different polymerisation catalysts are introduced and the phenomena related to mixing in the stirred tank reactor are presented. Also the advantages and challenges related to scale-up are discussed. The aim of the applied part was to design and implement an intermediate-sized reactor useful for scale-up studies. The reactor setting was tested making one batch of Ziegler–Natta polypropylene catalyst. The catalyst preparation with a designed equipment setting succeeded and the catalyst was analysed. The analyses of the catalyst were done, because the properties of the catalyst were compared to the normal properties of Ziegler–Natta polypropylene catalyst. The total titanium content of the catalyst was slightly higher than in normal Ziegler–Natta polypropylene catalyst, but the magnesium and aluminium content of the catalyst were in the normal level. By adjusting the siphonation tube and adding one washing step the titanium content of the catalyst could be decreased. The particle size of the catalyst was small, but the activity was in a normal range. The size of the catalyst particles could be increased by decreasing the stirring speed. During the test run, it was noticed that some improvements for the designed equipment setting could be done. For example more valves for the chemical feed line need to be added to ensure inert conditions during the catalyst preparation. Also nitrogen for the reactor needs to separate from other nitrogen line. With this change the pressure in the reactor can be kept as desired during the catalyst preparation. The proposals for improvements are presented in the applied part. After these improvements are done, the equipment setting is ready for start-up. The computational fluid dynamics model for the designed reactor was provided by cooperation with Lappeenranta University of Technology. The experiments showed that for adequate mixing with one impeller, stirring speed of 600 rpm is needed. The computational fluid dynamics model with two impellers showed that there was no difference in the mixing efficiency if the upper impeller were pumping downwards or upwards.
Resumo:
The development of software tools begun as the first computers were built. The current generation of development environments offers a common interface to access multiple software tools and often also provide a possibility to build custom tools as extensions to the existing development environment. Eclipse is an open source development environment that offers good starting point for developing custom extensions. This thesis presents a software tool to aid the development of context-aware applications on Multi-User Publishing Environment (MUPE) platform. The tool is implemented as an Eclipse plug-in. The tool allows developer to include external server side contexts to their MUPE applications. The tool allows additional context sources to be added through the Eclipse's extension point mechanism. The thesis describes how the tool was designed and implemented. The implementation consists of tool core component part and an additional context source extension part. Tool core component is responsible for the actual context addition and also provides the needed user interface elements to the Eclipse workbench. Context source component provides the needed context source related information to the core component. As part of the work an update site feature was also implemented for distributing the tool through Eclipse update mechanism.
Resumo:
Rising population, rapid urbanisation and growing industrialisation have severely stressed water quality and its availability in Malawi. In addition, financial and institutional problems and the expanding agro industry have aggravated this problem. The situation is worsened by depleting water resources and pollution from untreated sewage and industrial effluent. The increasing scarcity of clean water calls for the need for appropriate management of available water resources. There is also demand for a training system for conceptual design and evaluation for wastewater treatment in order to build the capacity for technical service providers and environmental practitioners in the country. It is predicted that Malawi will face a water stress situation by 2025. In the city of Blantyre, this situation is aggravated by the serious pollution threat from the grossly inadequate sewage treatment capacity. This capacity is only 23.5% of the wastewater being generated presently. In addition, limited or non-existent industrial effluent treatment has contributed to the severe water quality degradation. This situation poses a threat to the ecologically fragile and sensitive receiving water courses within the city. This water is used for domestic purposes further downstream. This manuscript outlines the legal and policy framework for wastewater treatment in Malawi. The manuscript also evaluates the existing wastewater treatment systems in Blantyre. This evaluation aims at determining if the effluent levels at the municipal plants conform to existing standards and guidelines and other associated policy and regulatory frameworks. The raw material at all the three municipal plants is sewage. The typical wastewater parameters are Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), and Total Suspended Solids (TSS). The treatment target is BOD5, COD, and TSS reduction. Typical wastewater parameters at the wastewater treatment plant at MDW&S textile and garments factory are BOD5 and COD. The treatment target is to reduce BOD5 and COD. The manuscript further evaluates a design approach of the three municipal wastewater treatment plants in the city and the wastewater treatment plant at Mapeto David Whitehead & Sons (MDW&S) textile and garments factory. This evaluation utilises case-based design and case-based reasoning principles in the ED-WAVE tool to determine if there is potential for the tool in Blantyre. The manuscript finally evaluates the technology selection process for appropriate wastewater treatment systems for the city of Blantyre. The criteria for selection of appropriate wastewater treatment systems are discussed. Decision support tools and the decision tree making process for technology selection are also discussed. Based on the treatment targets and design criteria at the eight cases evaluated in this manuscript in reference to similar cases in the ED-WAVE tool, this work confirms the practical use of case-based design and case-based reasoning principles in the ED-WAVE tool in the design and evaluation of wastewater treatment 6 systems in sub-Sahara Africa, using Blantyre, Malawi, as the case study area. After encountering a new situation, already collected decision scenarios (cases) are invoked and modified in order to arrive at a particular design alternative. What is necessary, however, is to appropriately modify the case arrived at through the Case Study Manager in order to come up with a design appropriate to the local situation taking into account technical, socio-economic and environmental aspects. This work provides a training system for conceptual design and evaluation for wastewater treatment.
Resumo:
Various regulations and customer requirements have made it necessary for Vacon Oyj to pay more attention to the environmental aspects in its processes. The main purpose of this master’s thesis project is to define how environmental aspects could be integrated into Vacon’s product development process. The aim is to find out the most important environmental aspects for the company to address, to examine how these could be taken into account during the development process and to map the critical factors that need consideration in order to ensure the successful integration of environmental aspects into the design process. Based on the customer requirements and evolving regulations the most important aspects for Vacon include minimizing the amount of harmful substances, improving the recyclability and energy efficiency of the product and moreover providing meaningful information related to these aspects. To tackle these issues, a new DfE process was developed, tasks in each phase were described and responsibilities were indicated. To ensure the success of the DfE process, management commitment, support of other processes and significant improvements in ways the information is managed are required. The developers should be provided with training and support. Environmental expertise and knowledge in-house should be developed and establishing meaningful environmental indicators is suggested.
Resumo:
Green IT is a term that covers various tasks and concepts that are related to reducing the environmental impact of IT. At enterprise level, Green IT has significant potential to generate sustainable cost savings: the total amount of devices is growing and electricity prices are rising. The lifecycle of a computer can be made more environmentally sustainable using Green IT, e.g. by using energy efficient components and by implementing device power management. The challenge using power management at enterprise level is how to measure and follow-up the impact of power management policies? During the thesis a power management feature was developed to a configuration management system. The feature can be used to automatically power down and power on PCs using a pre-defined schedule and to estimate the total power usage of devices. Measurements indicate that using the feature the device power consumption can be monitored quite precisely and the power consumption can be reduced, which generates electricity cost savings and reduces the environmental impact of IT.
Resumo:
The environmental impacts of a single mine often remain local, but acidic and metal-rich acid mine drainage (AMD) from the waste materials may pose a serious threat to adjacent surface waters and their ecosystems. Testate amoebae (thecamoebian) analysis was used together with lake sediment geochemistry to study and evaluate the ecological effects of sulphidic metal mines on aquatic environments. Three different mines were included in the study: Luikonlahti Cu-mine in Kaavi, eastern Finland, Haveri Cu-Au mine in Ylöjärvi, southern Finland and Pyhäsalmi Zn-Cu-S mine in Pyhäjärvi, central Finland. Luikonlahti and Haveri are closed mines, but Pyhäsalmi is still operating. The sampling strategy was case specific, and planned to provide a representative sediment sample series to define natural background conditions, to detect spatial and temporal variations in mine impacts, to evaluate the possible recovery after the peak contamination, and to distinguish the effects of other environmental factors from the mining impacts. In the Haveri case, diatom analyses were performed alongside thecamoebian analysis to evaluate the similarities and differences between the two proxies. The results of the analyses were investigated with multivariate methods (direct and indirect ordinations, diversity and distance measure indices). Finally, the results of each case study were harmonized, pooled, and jointly analyzed to summarize the results for this dissertation. Geochemical results showed broadly similar temporal patterns in each case. Concentrations of ions in the pre-disturbance samples defined the natural baseline against which other results were compared. The beginning of the mining activities had only minor impacts on sediment geochemistry, mainly appearing as an increased clastic input into the lakes at Haveri and Pyhäsalmi. The active mining phase was followed by the metallic contamination and, subsequently, by the most recent change towards decreased but still elevated metal concentrations in the sediments. Because of the delay in the oxidation of waste material and formation of AMD, the most intense, but transient metal contamination phase occurred in the post-mining period at Luikonlahti and Haveri. At Pyhäsalmi, the highest metal contamination preceded effluent mitigation actions. Spatial gradients were observed besides the temporal evolution in both the pre-disturbance and mine-impacted samples from Luikonlahti and Pyhäsalmi. The geochemical gradients varied with distance from the main source of contaminants (dispersion and dilution) and with water depth (redox and pH). The spatial extent of the highest metal contamination associated with these mines remained rather limited. At Haveri, the metallic impact was widespread, with the upstream site in another lake basin found to be contaminated. Changes in thecamoebian assemblages corresponded well with the geochemical results. Despite some differences, the general features and ecological responses of the faunal assemblages were rather similar in each lake. Constantly abundant strains of Difflugia oblonga, Difflugia protaeiformis and centropyxids formed the core of these assemblages. Increasing proportions of Cucurbitella tricuspis towards the surface samples were found in all of the cases. The results affirmed the indicator value of some already known indicator forms, but such as C. tricuspis and higher nutrient levels, but also elicited possible new ones such as D. oblonga ‘spinosa’ and clayey substrate, high conductivity and/or alkalinity, D. protaeiformis ‘multicornis’ and pH, water hardness and the amount of clastic material and Centropyxis constricta ‘aerophila’ and high metal and S concentrations. In each case, eutrophication appeared to be the most important environmental factor, masking the effects of other variables. Faunal responses to high metal inputs in sediments remained minor, but were nevertheless detectable. Besides the trophic state of the lake, numerical methods suggested overall geochemical conditions (pH, redox) to be the most important factor at Luikonlahti, whereas the Haveri results showed the clearest connection between metals and amoebae. At Pyhäsalmi, the strongest relationships were found between Ca- and S-rich present loading, redox conditions and substrate composition. Sediment geochemistry and testate amoeba analysis proved to be a suitable combination of methods to detect and describe the aquatic mine impacts in each specific case, to evaluate recovery and to differentiate between the effects of different anthropogenic and natural environmental factors. It was also suggested that aquatic mine impacts can be significantly mitigated by careful design and after-care of the waste facilities, especially by reducing and preventing AMD. The case-specific approach is nevertheless necessary because of the unique characteristics of each mine and variations in the environmental background conditions.
Resumo:
Sequestration of carbon dioxide in mineral rocks, also known as CO2 Capture and Mineralization (CCM), is considered to have a huge potential in stabilizing anthropogenic CO2 emissions. One of the CCM routes is the ex situ indirect gas/sold carbonation of reactive materials, such as Mg(OH)2, produced from abundantly available Mg-silicate rocks. The gas/solid carbonation method is intensively researched at Åbo Akademi University (ÅAU ), Finland because it is energetically attractive and utilizes the exothermic chemistry of Mg(OH)2 carbonation. In this thesis, a method for producing Mg(OH)2 from Mg-silicate rocks for CCM was investigated, and the process efficiency, energy and environmental impact assessed. The Mg(OH)2 process studied here was first proposed in 2008 in a Master’s Thesis by the author. At that time the process was applied to only one Mg-silicate rock (Finnish serpentinite from the Hitura nickel mine site of Finn Nickel) and the optimum process conversions, energy and environmental performance were not known. Producing Mg(OH)2 from Mg-silicate rocks involves a two-staged process of Mg extraction and Mg(OH)2 precipitation. The first stage extracts Mg and other cations by reacting pulverized serpentinite or olivine rocks with ammonium sulfate (AS) salt at 400 - 550 oC (preferably < 450 oC). In the second stage, ammonia solution reacts with the cations (extracted from the first stage after they are leached in water) to form mainly FeOOH, high purity Mg(OH)2 and aqueous (dissolved) AS. The Mg(OH)2 process described here is closed loop in nature; gaseous ammonia and water vapour are produced from the extraction stage, recovered and used as reagent for the precipitation stage. The AS reagent is thereafter recovered after the precipitation stage. The Mg extraction stage, being the conversion-determining and the most energy-intensive step of the entire CCM process chain, received a prominent attention in this study. The extraction behavior and reactivity of different rocks types (serpentinite and olivine rocks) from different locations worldwide (Australia, Finland, Lithuania, Norway and Portugal) was tested. Also, parametric evaluation was carried out to determine the optimal reaction temperature, time and chemical reagent (AS). Effects of reactor types and configuration, mixing and scale-up possibilities were also studied. The Mg(OH)2 produced can be used to convert CO2 to thermodynamically stable and environmentally benign magnesium carbonate. Therefore, the process energy and life cycle environmental performance of the ÅAU CCM technique that first produces Mg(OH)2 and the carbonates in a pressurized fluidized bed (FB) were assessed. The life cycle energy and environmental assessment approach applied in this thesis is motivated by the fact that the CCM technology should in itself offer a solution to what is both an energy and environmental problem. Results obtained in this study show that different Mg-silicate rocks react differently; olivine rocks being far less reactive than serpentinite rocks. In summary, the reactivity of Mg-silicate rocks is a function of both the chemical and physical properties of rocks. Reaction temperature and time remain important parameters to consider in process design and operation. Heat transfer properties of the reactor determine the temperature at which maximum Mg extraction is obtained. Also, an increase in reaction temperature leads to an increase in the extent of extraction, reaching a maximum yield at different temperatures depending on the reaction time. Process energy requirement for producing Mg(OH)2 from a hypothetical case of an iron-free serpentine rock is 3.62 GJ/t-CO2. This value can increase by 16 - 68% depending on the type of iron compound (FeO, Fe2O3 or Fe3O4) in the mineral. This suggests that the benefit from the potential use of FeOOH as an iron ore feedstock in iron and steelmaking should be determined by considering the energy, cost and emissions associated with the FeOOH by-product. AS recovery through crystallization is the second most energy intensive unit operation after the extraction reaction. However, the choice of mechanical vapor recompression (MVR) over the “simple evaporation” crystallization method has a potential energy savings of 15.2 GJ/t-CO2 (84 % savings). Integrating the Mg(OH)2 production method and the gas/solid carbonation process could provide up to an 25% energy offset to the CCM process energy requirements. Life cycle inventory assessment (LCIA) results show that for every ton of CO2 mineralized, the ÅAU CCM process avoids 430 - 480 kg CO2. The Mg(OH)2 process studied in this thesis has many promising features. Even at the current high energy and environmental burden, producing Mg(OH)2 from Mg-silicates can play a significant role in advancing CCM processes. However, dedicated future research and development (R&D) have potential to significantly improve the Mg(OH)2 process performance.
Resumo:
In a just-in-time, assemble-to-order production environments the scheduling of material requirements and production tasks - even though difficult - is of paramount importance. Different enterprise resource planning solutions with master scheduling functionality have been created to ease this problem and work as expected unless there is a problem in the material flow. This case-based candidate’s thesis introduces a tool for Microsoft Dynamics AX multisite environment, that can be used by site managers and production coordinators to get an overview of the current open sales order base and prioritize production in the event of material shortouts to avoid part-deliveries.