30 resultados para Dinamic Stability in Power Systems
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Condition monitoring systems for physical assets are constantly becoming more and more common in the industrial sector. At the same time an increasing portion of asset monitoring systems are being remotely supported. As global competitors are actively developing solutions for condition monitoring and condition-based maintenance, which it enables, Wärtsilä too feels the pressure to provide customers with more sophisticated condition-based maintenance solutions. The main aim of this thesis study is to consider Wärtsilä remote condition monitoring solutions and how they relate to similar solutions from other suppliers and end customers’ needs, in the context of offshore assets. A theoretical study is also included in the thesis, where the concepts of condition monitoring, condition-based maintenance, maintenance management and physical asset management are introduced.
Resumo:
This thesis deals with a hardware accelerated Java virtual machine, named REALJava. The REALJava virtual machine is targeted for resource constrained embedded systems. The goal is to attain increased computational performance with reduced power consumption. While these objectives are often seen as trade-offs, in this context both of them can be attained simultaneously by using dedicated hardware. The target level of the computational performance of the REALJava virtual machine is initially set to be as fast as the currently available full custom ASIC Java processors. As a secondary goal all of the components of the virtual machine are designed so that the resulting system can be scaled to support multiple co-processor cores. The virtual machine is designed using the hardware/software co-design paradigm. The partitioning between the two domains is flexible, allowing customizations to the resulting system, for instance the floating point support can be omitted from the hardware in order to decrease the size of the co-processor core. The communication between the hardware and the software domains is encapsulated into modules. This allows the REALJava virtual machine to be easily integrated into any system, simply by redesigning the communication modules. Besides the virtual machine and the related co-processor architecture, several performance enhancing techniques are presented. These include techniques related to instruction folding, stack handling, method invocation, constant loading and control in time domain. The REALJava virtual machine is prototyped using three different FPGA platforms. The original pipeline structure is modified to suit the FPGA environment. The performance of the resulting Java virtual machine is evaluated against existing Java solutions in the embedded systems field. The results show that the goals are attained, both in terms of computational performance and power consumption. Especially the computational performance is evaluated thoroughly, and the results show that the REALJava is more than twice as fast as the fastest full custom ASIC Java processor. In addition to standard Java virtual machine benchmarks, several new Java applications are designed to both verify the results and broaden the spectrum of the tests.
Resumo:
The performance of Grid connected Photovoltaic System working with DCBoost stage is investigated. The DC-Boost Converter topology is deduced from three phase half controlled bridge and controlled by Sliding Mode Control. Due to the fact that Grid connected Photovoltaic System includes Solar cells as a DC source and inverter for grid connection, those are under the scope of this research as well. The advantages of using MPPT are analyzed. The system is simulated in Matlab-Simulink™ environment.
Resumo:
This study compares different electric propulsion systems. Results of the analysis of all the advantages and disadvantages of the different propulsion systems are given. This thesis estimates possibilities to apply different diesel-electric propulsion concepts for different vessel types. Small and medium size vessel’s power ranges are studied. The optimal delivery system is chosen. This choice is made on the base of detailed study of the concepts, electrical equipment market and comparison of mass, volume and efficiency parameters. In this thesis three marine generators are designed. They are: salient pole synchronous generator and two permanent magnet synchronous generators. Their electrical, dimensional, cost and efficiency parameters are compared. To understand all the benefits diagrams with these parameters are prepared. Possible benefits and money savings are estimated. As the result the advantages, disadvantages and boundary conditions for the permanent magnet synchronous generator application in marine electric-power systems are found out.
Resumo:
In this work mathematical programming models for structural and operational optimisation of energy systems are developed and applied to a selection of energy technology problems. The studied cases are taken from industrial processes and from large regional energy distribution systems. The models are based on Mixed Integer Linear Programming (MILP), Mixed Integer Non-Linear Programming (MINLP) and on a hybrid approach of a combination of Non-Linear Programming (NLP) and Genetic Algorithms (GA). The optimisation of the structure and operation of energy systems in urban regions is treated in the work. Firstly, distributed energy systems (DES) with different energy conversion units and annual variations of consumer heating and electricity demands are considered. Secondly, district cooling systems (DCS) with cooling demands for a large number of consumers are studied, with respect to a long term planning perspective regarding to given predictions of the consumer cooling demand development in a region. The work comprises also the development of applications for heat recovery systems (HRS), where paper machine dryer section HRS is taken as an illustrative example. The heat sources in these systems are moist air streams. Models are developed for different types of equipment price functions. The approach is based on partitioning of the overall temperature range of the system into a number of temperature intervals in order to take into account the strong nonlinearities due to condensation in the heat recovery exchangers. The influence of parameter variations on the solutions of heat recovery systems is analysed firstly by varying cost factors and secondly by varying process parameters. Point-optimal solutions by a fixed parameter approach are compared to robust solutions with given parameter variation ranges. In the work enhanced utilisation of excess heat in heat recovery systems with impingement drying, electricity generation with low grade excess heat and the use of absorption heat transformers to elevate a stream temperature above the excess heat temperature are also studied.
Resumo:
Ambitious energy targets set by EU put pressures to increase share of renewable electricity supply in this and next decades and therefore, some EU member countries have boosted increasing renewable energy generation capacity by implementing subsidy schemes on national level. In this study, two different change approaches to increase renewable energy supply and increase self-sufficiency of supply are assessed with respect to their impacts on power system, electricity market and electricity generation costs in Finland. It is obtained that the current electricity generation costs are high compared to opportunities of earnings from present-day investor’s perspective. In addition, the growth expectations of consumptions and the price forecasts do not stimulate investing in new generation capacity. Revolutionary transition path is driven by administrative and political interventions to achieve the energy targets. Evolutionary transition path is driven by market-based mechanisms, such as market itself and emission trading scheme. It is obtained in this study that in the revolutionary transition path operation of market-based mechanisms is distorted to some extent and it is likely that this path requires providing more public financial resources compared to evolutionary transition path. In the evolutionary transition path the energy targets are not achieved as quickly but market-based mechanisms function better and investment environment endures more stable compared to revolutionary transition path.
Influence of surface functionalization on the behavior of silica nanoparticles in biological systems
Resumo:
Personalized nanomedicine has been shown to provide advantages over traditional clinical imaging, diagnosis, and conventional medical treatment. Using nanoparticles can enhance and clarify the clinical targeting and imaging, and lead them exactly to the place in the body that is the goal of treatment. At the same time, one can reduce the side effects that usually occur in the parts of the body that are not targets for treatment. Nanoparticles are of a size that can penetrate into cells. Their surface functionalization offers a way to increase their sensitivity when detecting target molecules. In addition, it increases the potential for flexibility in particle design, their therapeutic function, and variation possibilities in diagnostics. Mesoporous nanoparticles of amorphous silica have attractive physical and chemical characteristics such as particle morphology, controllable pore size, and high surface area and pore volume. Additionally, the surface functionalization of silica nanoparticles is relatively straightforward, which enables optimization of the interaction between the particles and the biological system. The main goal of this study was to prepare traceable and targetable silica nanoparticles for medical applications with a special focus on particle dispersion stability, biocompatibility, and targeting capabilities. Nanoparticle properties are highly particle-size dependent and a good dispersion stability is a prerequisite for active therapeutic and diagnostic agents. In the study it was shown that traceable streptavidin-conjugated silica nanoparticles which exhibit a good dispersibility could be obtained by the suitable choice of a proper surface functionalization route. Theranostic nanoparticles should exhibit sufficient hydrolytic stability to effectively carry the medicine to the target cells after which they should disintegrate and dissolve. Furthermore, the surface groups should stay at the particle surface until the particle has been internalized by the cell in order to optimize cell specificity. Model particles with fluorescently-labeled regions were tested in vitro using light microscopy and image processing technology, which allowed a detailed study of the disintegration and dissolution process. The study showed that nanoparticles degrade more slowly outside, as compared to inside the cell. The main advantage of theranostic agents is their successful targeting in vitro and in vivo. Non-porous nanoparticles using monoclonal antibodies as guiding ligands were tested in vitro in order to follow their targeting ability and internalization. In addition to the targeting that was found successful, a specific internalization route for the particles could be detected. In the last part of the study, the objective was to clarify the feasibility of traceable mesoporous silica nanoparticles, loaded with a hydrophobic cancer drug, being applied for targeted drug delivery in vitro and in vivo. Particles were provided with a small molecular targeting ligand. In the study a significantly higher therapeutic effect could be achieved with nanoparticles compared to free drug. The nanoparticles were biocompatible and stayed in the tumor for a longer time than a free medicine did, before being eliminated by renal excretion. Overall, the results showed that mesoporous silica nanoparticles are biocompatible, biodegradable drug carriers and that cell specificity can be achieved both in vitro and in vivo.
Resumo:
Industrial, electrical power generation, and transportation systems, to name but a few, rely heavily on power electronics to control and convert electrical power. Each of these systems, when encountering an unexpected failure, can cause significant financial losses, or even an emergency. A condition monitoring system would help to alleviate these concerns, but for the time being, there is no generally accepted and widely adopted method for power electronics. Acoustic emission is used as a failure precursor in many applications, but it has not been studied in power electronics so far. In this doctoral dissertation, observations of acoustic emission in power semiconductor components are presented. The acoustic emissions are caused by the switching operation and failure of power transistors. Three types of acoustic emission are observed. Furthermore, aspects related to the measurement and detection of acoustic phenomena are discussed. These include sensor performance and mechanical construction of experimental setups. The results presented in this dissertation are the outset of a research program where it will be determined whether an acoustic-emission-based condition monitoring method can be developed.
Resumo:
Pumping, fan and compressor systems consume most of the motor electricity power in both the industrial and services sectors. A variable speed drive brings relevant improvements in a fluid system leading to energy saving that further on can be translated into Mtons reduction of CO 2 emissions. Standards and regulations are being adopted for fluid handling systems to limit the less efficiency pumps out of the European market on the coming years and a greater potential in energy savings is dictated by the Energy Efficiency Index (EEI) requirements for the whole pumping system and integrated pumps. Electric motors also have an International Efficiency (IE) classification in order to introduce higher efficiency motors into the market. In this thesis, the applicability of mid-size common electric motor types to industrial pumping system took place comparing the motor efficiency characteristics with each other and by analyzing the effect of motor dimensioning on the pumping system and its impact in the energy consumption.
Resumo:
The purpose of this study was to investigate some important features of granular flows and suspension flows by computational simulation methods. Granular materials have been considered as an independent state ofmatter because of their complex behaviors. They sometimes behave like a solid, sometimes like a fluid, and sometimes can contain both phases in equilibrium. The computer simulation of dense shear granular flows of monodisperse, spherical particles shows that the collisional model of contacts yields the coexistence of solid and fluid phases while the frictional model represents a uniform flow of fluid phase. However, a comparison between the stress signals from the simulations and experiments revealed that the collisional model would result a proper match with the experimental evidences. Although the effect of gravity is found to beimportant in sedimentation of solid part, the stick-slip behavior associated with the collisional model looks more similar to that of experiments. The mathematical formulations based on the kinetic theory have been derived for the moderatesolid volume fractions with the assumption of the homogeneity of flow. In orderto make some simulations which can provide such an ideal flow, the simulation of unbounded granular shear flows was performed. Therefore, the homogeneous flow properties could be achieved in the moderate solid volume fractions. A new algorithm, namely the nonequilibrium approach was introduced to show the features of self-diffusion in the granular flows. Using this algorithm a one way flow can beextracted from the entire flow, which not only provides a straightforward calculation of self-diffusion coefficient but also can qualitatively determine the deviation of self-diffusion from the linear law at some regions nearby the wall inbounded flows. Anyhow, the average lateral self-diffusion coefficient, which was calculated by the aforementioned method, showed a desirable agreement with thepredictions of kinetic theory formulation. In the continuation of computer simulation of shear granular flows, some numerical and theoretical investigations were carried out on mass transfer and particle interactions in particulate flows. In this context, the boundary element method and its combination with the spectral method using the special capabilities of wavelets have been introduced as theefficient numerical methods to solve the governing equations of mass transfer in particulate flows. A theoretical formulation of fluid dispersivity in suspension flows revealed that the fluid dispersivity depends upon the fluid properties and particle parameters as well as the fluid-particle and particle-particle interactions.
Resumo:
Muokatun matriisi-geometrian tekniikan kehitys yleimmäksi jonoksi on esitelty tässä työssä. Jonotus systeemi koostuu useista jonoista joilla on rajatut kapasiteetit. Tässä työssä on myös tutkittu PH-tyypin jakautumista kun ne jaetaan. Rakenne joka vastaa lopullista Markovin ketjua jossa on itsenäisiä matriiseja joilla on QBD rakenne. Myös eräitä rajallisia olotiloja on käsitelty tässä työssä. Sen esitteleminen matriisi-geometrisessä muodossa, muokkaamalla matriisi-geometristä ratkaisua on tämän opinnäytetyön tulos.
Resumo:
Tässä päättötyössä annetaan kuvaus kehitetystä sovelluksesta Quasi Birth Death processien ratkaisuun. Tämä ohjelma on tähän mennessä ainutlaatuinen ja sen avulla voi ratkaista sarjan tehtäviä ja sitä tarvitaan kommunikaatio systeemien analyysiin. Mainittuun sovellukseen on annettu kuvaus ja määritelmä. Lyhyt kuvaus toisesta sovelluksesta Quasi Birth Death prosessien tehtävien ratkaisuun on myös annettu
Resumo:
In the last few years, the Ukrainian investment market has constantly shown strong performance and significant growth. This is primarily due to the investment attractiveness of Ukraine. From the perspective of investments in energy sector, Ukraine can be described as a country providing significant number of opportunities to multiply invested funds. But there are numbers of risks which hamper large investments. The work objective was to discover opportunities in small-scale hydropower and wind power sectors of Ukraine and more importantly to prove economic expediency of such investments. Thesis covers major of issues, concerning entering the Ukrainian power market as a foreign investor. It provides basic information about the structure of power market, the state of renewables sector in Ukraine, development of power sector in the regions, functioning of Wholesale Electricity Market, formation of electricity prices, possibilities for implementing joint Implementation mechanism, while the most attention, nevertheless, is concentrated on the opportunities in small-scale hydro and wind power sectors. Theoretical part of the study disclosed that Crimea peninsula has perfect wind conditions and could be a prospective area for wind project development. Investment analysis revealed that project profits will be excellent if green tariff for renewable energy is adopted. By the moment uncertainties about green law adoption bring additional risk to the projects and complicate any investment decision.