20 resultados para Composite materials. Sisal fabric. Hybridization and mechanical properties

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Full contour monolithic zirconia restorations have shown an increased popularity in the dental field over the recent years, owing to its mechanical and acceptable optical properties. However, many features of the restoration are yet to be researched and supported by clinical studies to confirm its place among the other indirect restorative materials This series of in vitro studies aimed at evaluating and comparing the optical and mechanical properties, light cure irradiance, and cement polymerization of multiple monolithic zirconia material at variable thicknesses, environments, treatments, and stabilization. Five different monolithic zirconia materials, four of which were partially stabilized and one fully stabilized were investigated. The optical properties in terms of surface gloss, translucency parameter, and contrast ratio were determined via a reflection spectrophotometer at variable thicknesses, coloring, sintering method, and after immersion in an acidic environment. Light cure irradiance and radiant exposure were quantified through the specimens at variable thicknesses and the degree of conversion of two dual-cure cements was determined via Fourier Transform Infrared spectroscopy. Bi-axial flexural strength was evaluated to compare between the partially and fully stabilized zirconia prepared using different coloring and sintering methods. Surface characterization was performed using a scanning electron microscope and a spinning disk confocal microscope. The surface gloss and translucency of the zirconia investigated were brand and thickness dependent with the translucency values decreasing as the thickness increased. Staining decreased the translucency of the zirconia and enhanced surface gloss as well as the flexural strength of the fully stabilized zirconia but had no effect on partially stabilized zirconia. Immersion in a corrosive acid increased surface gloss and decreased the translucency of some zirconia brands. Zirconia thickness was inversely related to the amount of light irradiance, radiant exposure, and degree of monomer conversion. Type of sintering furnace had no effect on the optical and mechanical properties of zirconia. Monolithic zirconia maybe classified as a semi-translucent material that is well influenced by the thickness, limiting its use in the esthetic zones. Conventional acid-base reaction, autopolymerizing and dual-cure cements are recommended for its cementation. Its desirable mechanical properties give it a high potential as a restoration for posterior teeth. However, close monitoring with controlled clinical studies must be determined before any definite clinical recommendations can be drawn.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fiber-reinforced composite as oral implant material: Experimental studies of glass fiber and bioactive glass in vitro and in vivo Department of Prosthetic Dentistry and Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland 2008. Biocompatibility and mechanical properties are important variables that need to be determined when new materials are considered for medical implants. Special emphasis was placed on these characteristics in the present work, which aimed to investigate the potential of fiber-reinforced composite (FRC) material as an oral implant. Furthermore, the purpose of this study was to explore the effect of bioactive glass (BAG) on osseointegration of FRC implants. The biocompatibility and mechanical properties of FRC implants were studied both in vitro and in vivo. The mechanical properties of the bulk FRC implant were tested with a cantilever bending test, torsional test and push-out test. The biocompatibility was first evaluated with osteoblast cells cultured on FRC substrates. Bone bonding was determined with the mechanical push-out test and histological as well as histomorplanimetric evaluation. Implant surface was characterized with SEM and EDS analysis. The results of these studies showed that FRC implants can withstand the static load values comparably to titanium. Threaded FRC implants had significantly higher push-out strength than the threaded titanium implants. Cell culture study revealed no cytotoxic effect of FRC materials on the osteoblast-like-cells. Addition of BAG particles enhanced cell proliferation and mineralization of the FRC substrates The in vivo study showed that FRC implants can withstand static loading until failure without fracture. The results also suggest that the FRC implant is biocompatible in bone. The biological behavior of FRC was comparable to that of titanium after 4 and 12 weeks of implantation. Furthermore, addition of BAG to FRC implant increases peri-implant osteogenesis and bone maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dental oxide ceramics have been inspired by their biocompability and mechanical properties which have made durable all-ceramic structures possible. Clinical longevity of the prosthetic structures is dependent on effective bonding with luting cements. As the initial shear bond strength values can be comparable with several materials and procedures, long-term durability is affected by ageing. Aims of the current study were: to measure the shear bond strength of resin composite-to-ceramics and to evaluate the longevity of the bond; to analyze factors affecting the bond, with special emphasis on: the form of silicatization of the ceramic surface; form of silanization; type of resin primer and the effect of the type of the resin composite luting cement; the effect of ageing in water was studied regarding its effect to the endurance of the bond. Ceramic substrates were alumina and yttrium stabilized zirconia. Ceramic conditioning methods included tribochemical silicatization and use of two silane couplings agents. A commercial silane primer was used as a control silane. Various combinations of conditioning methods, primers and resin cements were tested. Bond strengths were measured by shear bond strength method. The longevity of the bond was generally studied by thermocycling the materials in water. Additionally, in one of the studies thermal cycling was compared with long-term water storaging. Results were analysed statistically with ANOVA and Weibull analysis. Tribochemical treatment utilizing air pressure of 150 kPa resulted shear bond strengths of 11.2 MPa to 18.4 MPa and air pressure of 450 kPa 18.2 MPa to 30.5 MPa, respectively. Thermocycling of 8000 cycles or four years water storaging both decreased shear bond strength values to a range of 3.8 MPa to 7.2 MPa whereas initial situation varied from 16.8. Mpa to 23.0 MPa. The silane used in studies had no statistical significance. The use of primers without 10-MDP resulted spontaneous debonding during thermocycling or shear bond strengths below 5 MPa. As conclusion, the results showed superior long-term bonding with primers containing 10-MDP. Silicatization with silanizing showed improved initial shear bond strength values which considerably decreased with ageing in water. Thermal cycling and water storing for up to four years played the major role in reduction of bond strength, which could be due to thermal fatigue of the bonding interface and hydrolytic degradation of the silane coupled interface.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Papper kan anses vara ett av de mest använda materialen i det dagliga livet. Tidskrifter, tidningar, böcker och diverse förpackningar är några exempel på pappersbaserade produkter. Papperets egenskaper måste anpassas till användningsändamålet. En tidskrift kräver t.ex. hög ljushet, opacitet och en slät yta hos papperet, medan dessa egenskaper är mindre viktiga för en dagstidning. Allt tryckpapper behöver vissa mekaniska egenskaper för att tåla vidarebearbetning såsom kalandrering, tryckning och vikning. Man kan bestryka papper för att förbättra dess optiska egenskaper och tryckbarhetsegenskaper. Vid bestrykning appliceras en dispersion av mineralpigment och polymerbindemedel som ett tunt lager på papperets yta. Bestrykningsskiktet kan ses som ett komplext, poröst kompositmaterial som även bidrar till papperets mekaniska egenskaper och dess processerbarhet i diverse konverteringsoperationer. Kravet på framställning av förmånligt papper med tillräckliga styrkeegenskaper ställer allt högre krav på optimeringen av pappersbestrykningsskiktets egenskaper och produktionskostnader. Målet med detta arbete var att förstå sambandet mellan pigmentbestrykningsskiktets mikrostruktur och dess makroskopiska, mekaniska egenskaper. Resultaten visar att adhesionen i gränsytan mellan pigment och bindemedel är kritisk för bestrykningsskiktets förmåga att bära mekanisk belastning. Polära vätskor är vanliga i tryckfärger och kan, eftersom de påverkar syra/bas-interaktionerna mellan pigment och latexbindemedel, försvaga denna adhesion. Resultaten tyder på att ytstyrkan hos bestruket papper kan höjas genom användning av bifunktionella dispergeringsmedel för mineralpigment. Detta medför inbesparingar i pappersproduktionen eftersom mängden bindemedel, den dyraste komponenten i bestrykningsskiktet, kan minskas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, the sorption and elastic properties of the cation-exchange resins were studied to explain the liquid chromatographic separation of carbohydrates. Na+, Ca2+ and La3+ form strong poly(styrene-co-divinylbenzene) (SCE) as well as Na+ and Ca2+ form weak acrylic (WCE) cation-exchange resins at different cross-link densities were treated within this work. The focus was on the effects of water-alcohol mixtures, mostly aqueous ethanol, and that of the carbohydrates. The carbohydrates examined were rhamnose, xylose, glucose, fructose, arabinose, sucrose, xylitol and sorbitol. In addition to linear chromatographic conditions, non-linear conditions more typical for industrial applications were studied. Both experimental and modeling aspectswere covered. The aqueous alcohol sorption on the cation-exchangers were experimentally determined and theoretically calculated. The sorption model includes elastic parameters, which were obtained from sorption data combined with elasticity measurements. As hydrophilic materials cation-exchangers are water selective and shrink when an organic solvent is added. At a certain deswelling degree the elastic resins go through glass transition and become as glass-like material. Theincreasing cross-link level and the valence of the counterion decrease the sorption of solvent components in the water-rich solutions. The cross-linkage or thecounterions have less effect on the water selectivity than the resin type or the used alcohol. The amount of water sorbed is higher in the WCE resin and, moreover, the WCE resin is more water selective than the corresponding SCE resin. Theincreased aliphatic part of lower alcohols tend to increase the water selectivity, i.e. the resins are more water selective in 2-propanol than in ethanol solutions. Both the sorption behavior of carbohydrates and the sorption differences between carbohydrates are considerably affected by the eluent composition and theresin characteristics. The carbohydrate sorption was experimentally examined and modeled. In all cases, sorption and moreover the separation of carbohydrates are dominated by three phenomena: partition, ligand exchange and size exclusion. The sorption of hydrophilic carbohydrates increases when alcohol is added into the eluent or when carbohydrate is able to form coordination complexes with the counterions, especially with multivalent counterions. Decreasing polarity of the eluent enhances the complex stability. Size exclusion effect is more prominent when the resin becomes tighter or carbohydrate size increases. On the other hand,the elution volumes between different sized carbohydrates decreases with the decreasing polarity of the eluent. The chromatographic separation of carbohydrateswas modeled, using rhamnose and xylose as target molecules. The thermodynamic sorption model was successfully implemented in the rate-based column model. The experimental chromatographic data were fitted by using only one adjustable parameter. In addition to the fitted data also simulated data were generated and utilized in explaining the effect of the eluent composition and of the resin characteristics on the carbohydrate separation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Työn aiheena on siistausmassan saostuksessa käytettävä kiekkosuodatinväliaine ja tarkoituksena selvittää lankamateriaalien ja pinnoitusaineiden vaikutusta väliaineen likaantumisherkkyyteen ja suodatusteknisiin ominaisuuksiin. Siistauslaitosten ongelmana on suodatinväliaineen likaantuminen massassa olevien tahmo- ja painoväripartikkelien johdosta. Tällä hetkellä siistauslaitosten kiekkosuodatinpussien valmistuksessa käytetään pääasiassa polypropeeni- ja polyvinylideenifluoridimonofilamenttilankoja, joiden lianhylkivyys on osoittautunut huonoksi. Uusiksi lankamateriaaleiksi tutkimuksiin valittiin Easy Kleen I, Easy Kleen II, Hyflon, Halar ja Polyesteri. Tulosten perusteella Easy Kleen I ja II monofilamenttilangoista kudotun suodatinkankaan lianhylkivyys on polypropeeni- ja polyvinylideenifluoridimonofilamenttilangoista kudottua kangasta parempi. Suodatusteknisissä ominaisuuksissa ei materiaalien välillä havaittu merkittävää eroa. Easy Kleen monofilamenttilangat näyttävät soveltuvan myös keittokutistumiltaan ja mekaanisilta ominaisuuksiltaan kiekkosuodatinpussien materiaaleiksi. Polypropeeni- ja polyesterimonofilamenettilangoista kudottujen suodatinkankaiden pinnoittamisessa käytettiin hydrofiilisiä ja hydrofobisia pinnoitusaineita. Tulosten perusteella on mahdollista parantaa suodatinkankaan lianhylkivyyttä pinnoittamalla. Pinnoitettu kangas on myös suodatusteknisiltä ominaisuuksiltaan toimiva. Ongelmaksi suodatinkankaiden pinnoittamisessa saattaa kuitenkin muodostua pinnoituslämpötila, jossa kangas kutistuu asennuskelvottomaksi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is devoted to investigations of three typical representatives of the II-V diluted magnetic semiconductors, Zn1-xMnxAs2, (Zn1-xMnx)3As2 and p-CdSb:Ni. When this work started the family of the II-V semiconductors was presented by only the compounds belonging to the subgroup II3-V2, as (Zn1-xMnx)3As2, whereas the rest of the materials mentioned above were not investigated at all. Pronounced low-field magnetic irreversibility, accompanied with a ferromagnetic transition, are observed in Zn1-xMnxAs2 and (Zn1-xMnx)3As2 near 300 K. These features give evidence for presence of MnAs nanosize magnetic clusters, responsible for frustrated ground magnetic state. In addition, (Zn1-xMnx)3As2 demonstrates large paramagnetic response due to considerable amount of single Mn ions and small antiferromagnetic clusters. Similar paramagnetic system existing in Zn1-xMnxAs2 is much weaker. Distinct low-field magnetic irreversibility, accompanied with a rapid saturation of the magnetization with increasing magnetic field, is observed near the room temperature in p- CdSb:Ni, as well. Such behavior is connected to the frustrated magnetic state, determined by Ni-rich magnetic Ni1-xSbx nanoclusters. Their large non-sphericity and preferable orientations are responsible for strong anisotropy of the coercivity and saturation magnetization of p- CdSb:Ni. Parameters of the Ni1-xSbx nanoclusters are estimated. Low-temperature resistivity of p-CdSb:Ni is governed by a hopping mechanism of charge transfer. The variable-range hopping conductivity, observed in zero magnetic field, demonstrates a tendency of transformation into the nearest-neighbor hopping conductivity in non-zero magnetic filed. The Hall effect in p-CdSb:Ni exhibits presence of a positive normal and a negative anomalous contributions to the Hall resistivity. The normal Hall coefficient is governed mainly by holes activated into the valence band, whereas the anomalous Hall effect, attributable to the Ni1-xSbx nanoclusters with ferromagnetically ordered internal spins, exhibits a low-temperature power-law resistivity scaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ilmaston lämpeneminen ja luonnonvarojen ehtyminen ovat nostaneet ympäristöasiat erittäin ajankohtaisiksi ja kierrättämisen merkitys korostuu entisestään. Tässä diplomityössä on käsitelty teollisuuden jätteiden ja sivutuotteiden kierrättämistä puumuovikomposiitin raaka-aineeksi. Työssä on tutkittu Kaakkois-Suomessa olevia tärkeimpiä teollisuuden sivuainevirtoja puumuovikomposiitin kannalta sekä valmistettu puumuovikomposiittia hyödyntämällä kahta kaatopaikalle päätyvää jätettä. Kaakkois-Suomen teollisuuden jätteitä selvitettäessä löytyi paljon puumuovikomposiitin valmistamiseen soveltuvia jätteitä. Mekaanisen metsäteollisuuden sivutuotteita käytetään yleisesti puumuovikomposiitin valmistamiseen. Muita potentiaaliseksi havaittuja raakaaineita ovat mm. lentotuhka, lasikuitujäte, pakkauskartonki, muovijätteet ja vuorivillan valmistuksessa syntyvät jätteet. Koemateriaaleiksi valittiin puunpoltosta peräisin oleva lentotuhka ja vuorivillan valmistamisessa syntyvä vuorivillapöly. Materiaaleilla korvattiin puuta puumuovikomposiitissa ja valmistetulle komposiitille suoritettiin kokeita mekaanisten ominaisuuksien selvittämiseksi. Molempien materiaalien kohdalla ominaisuuksien havaittiin parantuneen ilman täyteainetta valmistettuun komposiittiin verrattuna.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interest to hole-doped mixed-valence manganite perovskites is connected to the ‘colossal’ magnetoresistance. This effect or huge drop of the resistivity, ρ, in external magnetic field, B, attains usually the maximum value near the ferromagnetic Curie temperature, TC. In this thesis are investigated conductivity mechanisms and magnetic properties of the manganite perovskite compounds LaMnO3+, La1-xCaxMnO3, La1-xCaxMn1-yFeyO3 and La1- xSrxMn1-yFeyO3. When the present work was started the key role of the phase separation and its influence on the properties of the colossal magnetoresistive materials were not clear. Our main results are based on temperature dependencies of the magnetoresistance and magnetothermopower, investigated in the temperature interval of 4.2 - 300 K in magnetic fields up to 10 T. The magnetization was studied in the same temperature range in weak (up to 0.1 T) magnetic fields. LaMnO3+δ is the parent compound for preparation of the hole-doped CMR materials. The dependences of such parameters as the Curie temperature, TC, the Coulomb gap, Δ, the rigid gap, γ, and the localization radius, a, on pressure, p, are observed in LaMnO3+δ. It has been established that the dependences above can be interpreted by increase of the electron bandwidth and decrease of the polaron potential well when p is increased. Generally, pressure stimulates delocalization of the electrons in LaMnO3+δ. Doping of LaMnO3 with Ca, leading to La1-xCaxMnO3, changes the Mn3+/Mn4+ ratio significantly and brings an additional disorder to the crystal lattice. Phase separation in a form of mixture of the ferromagnetic and the spin glass phases was observed and investigated in La1- xCaxMnO3 at x between 0 and 0.4. Influence of the replacement of Mn by Fe is studied in La0.7Ca0.3Mn1−yFeyO3 and La0.7Sr0.3Mn1−yFeyO3. Asymmetry of the soft Coulomb gap and of the rigid gap in the density of localized states, small shift of the centre of the gaps with respect to the Fermi level and cubic asymmetry of the density of states are obtained in La0.7Ca0.3Mn1−yFeyO3. Damping of TC with y is connected to breaking of the double-exchange interaction by doping with Fe, whereas the irreversibility and the critical behavior of the magnetic susceptibility are determined by the phase separation and the frustrated magnetic state of La0.7Sr0.3Mn1−yFeyO3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is devoted to growth and investigations of Mn-doped InSb and II-IV-As2 semiconductors, including Cd1-xZnxGeAs2:Mn, ZnSiAs2:Mn bulk crystals, ZnSiAs2:Mn/Si heterostructures. Bulk crystals were grown by direct melting of starting components followed by fast cooling. Mn-doped ZnSiAs2/Si heterostructures were grown by vacuum-thermal deposition of ZnAs2 and Mn layers on Si substrates followed by annealing. The compositional and structural properties of samples were investigated by different methods. The samples consist of micro- and nano- sizes clusters of an additional ferromagnetic Mn-X phases (X = Sb or As). Influence of magnetic precipitations on magnetic and electrical properties of the investigated materials was examined. With relatively high Mn concentration the main contribution to magnetization of samples is by MnSb or MnAs clusters. These clusters are responsible for high temperature behavior of magnetization and relatively high Curie temperature: up to 350 K for Mn-doped II-IV-As2 and about 600 K for InMnSb. The low-field magnetic properties of Mn-doped II-IV-As2 semiconductors and ZnSiAs2:Mn/Si heterostructures are connected to the nanosize MnAs particles. Also influence of nanosized MnSb clusters on low-field magnetic properties of InMnSb have been observed. The contribution of paramagnetic phase to magnetization rises at low temperatures or in samples with low Mn concentration. Source of this contribution is not only isolated Mn ions, but also small complexes, mainly dimmers and trimmers formed by Mn ions, substituting cation positions in crystal lattice. Resistivity, magnetoresistance and Hall resistivity properties in bulk Mn-doped II-IV-As2 and InSb crystals was analyzed. The interaction between delocalized holes and 3d shells of the Mn ions together with giant Zeeman splitting near the cluster interface are respond for negative magnetoresistance. Additionally to high temperature critical pointthe low-temperature ferromagnetic transition was observed Anomalous Hall effect was observed in Mn doped samples and analyzed for InMnSb. It was found that MnX clusters influence significantly on magnetic scattering of carriers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hen eggs and oats (Avena Sativa) are important materials for the food industry. Today, instead of merely satisfying the feeling of hunger, consumers are asking for healthier, biologically active and environmentally friendly products. The growing awareness of consumers’ increasing demands presents a great challenge to the food industry to develop more sustainable products and utilise modern and effective techniques. The modification of yolk fatty acid composition by means of feed supplements is well understood. Egg yolk phospholipids are polar lipids and are used in several applications including food, cosmetics, pharmaceuticals, and special nutrients. Egg yolk phospholipids are excellent emulsifiers, typically sold as mixtures of phospholipids, triacylglycerols, and cholesterol. However, highly purified and characterised phospholipids are needed in several sophisticated applications. Industrial fractionation of phospholipids is usually based on organic solvents. With these fractionation techniques, some harmful residues of organic solvents may cause problems in further processing. The objective of the present study was to investigate the methods to improve the functional properties of eggs, to develop techniques to isolate the fractions responsible for the specific functional properties of egg yolk lipids, and to apply the developed techniques to plant-based materials, too. Fractionation techniques based on supercritical fluids were utilised for the separation of the lipid fractions of eggs and oats. The chemical and functional characterisation of the fractions were performed, and the produced oat polar lipid fractions were tested as protective barrier in encapsulation processes. Modifying the fatty acid compositions of egg yolks with different types of oil supplements in feed had no affect on their functional or sensory properties. Based on the results of functional and sensory analysis, it is evident that eggs with modified fatty acid compositions are usable in several industrial applications. These applications include liquid egg yolk products used in mayonnaise and salad dressings. Egg yolk powders were utilised in different kinds of fractionation processes. The precipitation method developed in this study resembles the supercritical anti-solvent method, which is typically used in the pharmaceutical industry. With pilot scale supercritical fluid processes, non-polar lipids and polar lipids were successfully separated from commercially produced egg yolk powder and oat flakes. The egg and oat-based polar lipid fractions showed high purities, and the corresponding delipidated fractions produced using supercritical techniques offer interesting starting materials for the further production of bioactive compounds. The oat polar lipid fraction contained especially digalactosyadiacylglycerol, which was shown to have valuable functional properties in the encapsulation of probiotics.