19 resultados para Classificació AMS::70 Mechanics of particles and systems::70S Classical field theories
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
This thesis presents a three-dimensional, semi-empirical, steady state model for simulating the combustion, gasification, and formation of emissions in circulating fluidized bed (CFB) processes. In a large-scale CFB furnace, the local feeding of fuel, air, and other input materials, as well as the limited mixing rate of different reactants produce inhomogeneous process conditions. To simulate the real conditions, the furnace should be modelled three-dimensionally or the three-dimensional effects should be taken into account. The only available methods for simulating the large CFB furnaces three-dimensionally are semi-empirical models, which apply a relatively coarse calculation mesh and a combination of fundamental conservation equations, theoretical models and empirical correlations. The number of such models is extremely small. The main objective of this work was to achieve a model which can be applied to calculating industrial scale CFB boilers and which can simulate all the essential sub-phenomena: fluid dynamics, reactions, the attrition of particles, and heat transfer. The core of the work was to develop the model frame and the required sub-models for determining the combustion and sorbent reactions. The objective was reached, and the developed model was successfully used for studying various industrial scale CFB boilers combusting different types of fuel. The model for sorbent reactions, which includes the main reactions for calcitic limestones, was applied for studying the new possible phenomena occurring in the oxygen-fired combustion. The presented combustion and sorbent models and principles can be utilized in other model approaches as well, including other empirical and semi-empirical model approaches, and CFD based simulations. The main achievement is the overall model frame which can be utilized for the further development and testing of new sub-models and theories, and for concentrating the knowledge gathered from the experimental work carried out at bench scale, pilot scale and industrial scale apparatus, and from the computational work performed by other modelling methods.
Resumo:
Computational fluid dynamics (CFD) modeling is an important tool in designing new combustion systems. By using CFD modeling, entire combustion systems can be modeled and the emissions and the performance can be predicted. CFD modeling can also be used to develop new and better combustion systems from an economical and environmental point of view. In CFD modeling of solid fuel combustion, the combustible fuel is generally treated as single fuel particles. One of the limitations with the CFD modeling concerns the sub-models describing the combustion of single fuel particles. Available models in the scientific literature are in many cases not suitable as submodels for CFD modeling since they depend on a large number of input parameters and are computationally heavy. In this thesis CFD-applicable models are developed for the combustion of single fuel particles. The single particle models can be used to improve the combustion performance in various combustion devices or develop completely new technologies. The investigated fields are oxidation of carbon (C) and nitrogen (N) in char residues from solid fuels. Modeled char-C oxidation rates are compared to experimental oxidation rates for a large number of pulverized solid fuel chars under relevant combustion conditions. The experiments have been performed in an isothermal plug flow reactor operating at 1123-1673 K and 3-15 vol.% O2. In the single particle model, the char oxidation is based on apparent kinetics and depends on three fuel specific parameters: apparent pre-exponential factor, apparent activation energy, and apparent reaction order. The single particle model can be incorporated as a sub-model into a CFD code. The results show that the modeled char oxidation rates are in good agreement with experimental char oxidation rates up to around 70% of burnout. Moreover, the results show that the activation energy and the reaction order can be assumed to be constant for a large number of bituminous coal chars under conditions limited by the combined effects of chemical kinetics and pore diffusion. Based on this, a new model based on only one fuel specific parameter is developed (Paper III). The results also show that reaction orders of bituminous coal chars and anthracite chars differ under similar conditions (Paper I and Paper II); reaction orders of bituminous coal chars were found to be one, while reaction orders of anthracite chars were determined to be zero. This difference in reaction orders has not previously been observed in the literature and should be considered in future char oxidation models. One of the most frequently used comprehensive char oxidation models could not explain the difference in the reaction orders. In the thesis (Paper II), a modification to the model is suggested in order to explain the difference in reaction orders between anthracite chars and bituminous coal chars. Two single particle models are also developed for the NO formation and reduction during the oxidation of single biomass char particles. In the models the char-N is assumed to be oxidized to NO and the NO is partly reduced inside the particle. The first model (Paper IV) is based on the concentration gradients of NO inside and outside the particle and the second model is simplified to such an extent that it is based on apparent kinetics and can be incorporated as a sub-model into a CFD code (Paper V). Modeled NO release rates from both models were in good agreement with experimental measurements from a single particle reactor of quartz glass operating at 1173-1323 K and 3-19 vol.% O2. In the future, the models can be used to reduce NO emissions in new combustion systems.
Resumo:
Doctoral dissertation, University of Joensuu
Resumo:
Micronization techniques based on supercritical fluids (SCFs) are promising for the production of particles with controlled size and distribution. The interest of the pharmaceutical field in the development of SCF techniques is increasing due to the need for clean processes, reduced consumption of energy, and to their several possible applications. The food field is still far from the application of SCF micronization techniques, but there is increasing interest mainly for the processing of products with high added value. The aim of this study is to use SCF micronization techniques for the production of particles of pharmaceuticals and food ingredients with controlled particle size and morphology, and to look at their production on semi-industrial scale. The results obtained are also used to understand the processes from the perspective of broader application within the pharmaceutical and food industries. Certain pharmaceuticals, a biopolymer and a food ingredient have been tested using supercritical antisolvent micronization (SAS) or supercritical assisted atomization (SAA) techniques. The reproducibility of the SAS technique has been studied using physically different apparatuses and on both laboratory and semi-industrial scale. Moreover, a comparison between semi-continuous and batch mode has been performed. The behaviour of the system during the SAS process has been observed using a windowed precipitation vessel. The micronized powders have been characterized by particle size and distribution, morphology and crystallinity. Several analyses have been performed to verify if the SCF process modified the structure of the compound or caused degradation or contamination of the product. The different powder morphologies obtained have been linked to the position of the process operating point with respect to the vapour-liquid equilibrium (VLE) of the systems studied, that is, mainly to the position of the mixture critical point (MCP) of the mixture. Spherical micro, submicro- and nanoparticles, expanded microparticles (balloons) and crystals were obtained by SAS. The obtained particles were amorphous or with different degrees of crystallinity and, in some cases, had different pseudo-polymorphic or polymorphic forms. A compound that could not be processed using SAS was micronized by SAA, and amorphous particles were obtained, stable in vials at room temperature. The SCF micronization techniques studied proved to be effective and versatile for the production of particles for several uses. Furthermore, the findings of this study and the acquired knowledge of the proposed processes can allow a more conscious application of SCF techniques to obtain products with the desired characteristics and enable the use of their principles for broader applications.
Resumo:
Tämän tutkielman tavoitteena on perehtyä globaalin yrityksen laskentatoimen tietojärjestelmien yhtenäistämiseen ja käyttöönottoon esimerkkinä UPM-Kymmene konsernin projekti. Tutkielmassa sovelletaan hermeneuttista tutkimusotetta. Teoreettisesti aihetta tarkastellaan globalisoitumisen ja laskentatoimen tietojärjestelmille asetettavien vaatimusten pohjalta, sekä järjestelmän muutosprosessin eri vaiheissa huomioon otettavien muuttujien perusteella. Yhtenäisen laskentatoimen tietojärjestelmän tuomat edut globaalille yritykselle ovat ilmeisiä. Ennen yhtenäisen projektin kehittelyä on olennaista tutkia lähtökohdat projektin onnistumiselle ja suunnitella projektin eri vaiheet huolella. Tutkielmassa havaitaan myös, että globaalissa yrityksessä tulee huomioida eri yrityskulttuurit sekä tulosyksiköiden erilaiset toimintatavat. Johtopäätöksenä todetaan, että sekä yritysjohdon että tulosyksiköiden sitoutuneisuus projektiin ja yhtenäiset tavoitteet ovat oleellisia projektin onnistumisen kannalta.
Resumo:
Teollusuussovelluksissa vaaditaan nykyisin yhä useammin reaaliaikaista tiedon käsittelyä. Luotettavuus on yksi tärkeimmistä reaaliaikaiseen tiedonkäsittelyyn kykenevän järjestelmän ominaisuuksista. Sen saavuttamiseksi on sekä laitteisto, että ohjelmisto testattava. Tämän työn päätavoitteena on laitteiston testaaminen ja laitteiston testattavuus, koska luotettava laitteistoalusta on perusta tulevaisuuden reaaliaikajärjestelmille. Diplomityössä esitetään digitaaliseen signaalinkäsittelyyn soveltuvan prosessorikortin suunnittelu. Prosessorikortti on tarkoitettu sähkökoneiden ennakoivaa kunnonvalvontaa varten. Uusimmat DFT (Desing for Testability) menetelmät esitellään ja niitä sovelletaan prosessorikortin sunnittelussa yhdessä vanhempien menetelmien kanssa. Kokemukset ja huomiot menetelmien soveltuvuudesta raportoidaan työn lopussa. Työn tavoitteena on kehittää osakomponentti web -pohjaiseen valvontajärjestelmään, jota on kehitetty Sähkötekniikan osastolla Lappeenrannan teknillisellä korkeakoululla.
Resumo:
Diplomityön tarkoituksena oli kuidutusrumpulaitteiston käytön- ja kannatuksen kehittä-minen. Työ rajattiin laajuutensa vuoksi koskemaan tuotesarjan viittä pienintä kokoa. Työn alkuosassa käsitellään kuidutuksen teoriaa ja siihen soveltuvia laitteistoja. Käytön suunnittelun kannalta olennaista käynnistystehon tarvetta on tarkasteltu lähtökohdaisesti fysiikan avulla. Perustietoja teorialle on haettu aiemmista tutkimuksista sekä kirjallisuu-desta. Tarkastelun tuloksena teoriaa on kehitty ja se on saatu vastaamaan todellisuutta aiempaa paremmin. Kannatuksen ja käytön toteuttamisvaihtoja etsittäessä on käytetty systemaattisen koneen-suunnittelun keinoja. Saatuja ideoita on arvioitu teknillis-taloudellisin perustein ja näistä on valittu parhaat vaihtoehdot jatkokehitykseen. Jatkokehitysvaiheessa ratkaisuvaihto-ehtoja on tarkasteltu komponenttitasolla ja näistä on tehty yksityiskohtaiset kustannus-laskelmat. Työn tuloksena on esitetty kannatuksen ja käytön toteutusvaihtoehto, jonka avulla voidaan saavuttaa merkittäviä kustannussäästöjä. Korkea, 30 prosentin kustannussäästö-tavoite saavutettiin.
Resumo:
The objective of the thesis is to enhance the understanding about the management of the front end phases of the innovation process in a networked environment. The thesis approaches the front end of innovation from three perspectives, including the strategy, processes and systems of innovation. The purpose of the use of different perspectives in the thesis is that of providing an extensive systemic view of the front end, and uncovering the complex nature of innovation management. The context of the research is the networked operating environment of firms. The unit of analysis is the firm itself or its innovation processes, which means that this research approaches the innovation networks from the point of view of a firm. The strategy perspective of the thesis emphasises the importance of purposeful innovation management, the innovation strategy of firms. The role of innovation processes is critical in carrying out innovation strategies in practice, supporting the development of organizational routines for innovation, and driving the strategic renewal of companies. The primary focus of the thesis from systems perspective is on idea management systems, which are defined as a part of innovation management systems, and defined for this thesis as any working combination of methodology and tools (manual or IT-supported) that enhance the management of innovations within their early phases. The main contribution of the thesis are the managerial frameworks developed for managing the front end of innovation, which purposefully “wire” the front end of innovation into the strategy and business processes of a firm. The thesis contributes to modern innovation management by connecting the internal and external collaboration networks as foundational elements for successful management of the early phases of innovation processes in a dynamic environment. The innovation capability of a firm is largely defined by its ability to rely on and make use of internal and external collaboration already during the front end activities, which by definition include opportunity identification and analysis, idea generation, profileration and selection, and concept definition. More specifically, coordination of the interfaces between these activities, and between the internal and external innovation environments of a firm is emphasised. The role of information systems, in particular idea management systems, is to support and delineate the innovation-oriented behaviour and interaction of individuals and organizations during front end activities. The findings and frameworks developed in the thesis can be used by companies for purposeful promotion of their front end processes. The thesis provides a systemic strategy framework for managing the front end of innovation – not as a separate process, but as an elemental bundle ofactivities that is closely linked to the overall innovation process and strategy of a firm in a distributed environment. The theoretical contribution of the thesis relies on the advancement of the open innovation paradigm in the strategic context of a firm within its internal and external innovation environments. This thesis applies the constructive research approach and case study methodology to provide theoretically significant results, which are also practically beneficial.
Resumo:
This thesis introduces a real-time simulation environment based on the multibody simulation approach. The environment consists of components that are used in conventional product development, including computer aided drawing, visualization, dynamic simulation and finite element software architecture, data transfer and haptics. These components are combined to perform as a coupled system on one platform. The environment is used to simulate mobile and industrial machines at different stages of a product life time. Consequently, the demands of the simulated scenarios vary. In this thesis, a real-time simulation environment based on the multibody approach is used to study a reel mechanism of a paper machine and a gantry crane. These case systems are used to demonstrate the usability of the real-time simulation environment for fault detection purposes and in the context of a training simulator. In order to describe the dynamical performance of a mobile or industrial machine, the nonlinear equations of motion must be defined. In this thesis, the dynamical behaviour of machines is modelled using the multibody simulation approach. A multibody system may consist of rigid and flexible bodies which are joined using kinematic joint constraints while force components are used to describe the actuators. The strength of multibody dynamics relies upon its ability to describe nonlinearities arising from wearing of the components, friction, large rotations or contact forces in a systematic manner. For this reason, the interfaces between subsystems such as mechanics, hydraulics and control systems of the mechatronic machine can be defined and analyzed in a straightforward manner.
Resumo:
The aim of this master’s thesis is to develop an algorithm to calculate the cable network for heat and power station CHGRES. This algorithm includes important aspect which has an influence on the cable network reliability. Moreover, according to developed algorithm, the optimal solution for modernization cable system from economical and technical point of view was obtained. The conditions of existing cable lines show that replacement is necessary. Otherwise, the fault situation would happen. In this case company would loss not only money but also its prestige. As a solution, XLPE single core cables are more profitable than other types of cable considered in this work. Moreover, it is presented the dependence of value of short circuit current on number of 10/110 kV transformers connected in parallel between main grid and considered 10 kV busbar and how it affects on final decision. Furthermore, the losses of company in power (capacity) market due to fault situation are presented. These losses are commensurable with investment to replace existing cable system.
Resumo:
This bachelor’s thesis, written for Lappeenranta University of Technology and implemented in a medium-sized enterprise (SME), examines a distributed document migration system. The system was created to migrate a large number of electronic documents, along with their metadata, from one document management system to another, so as to enable a rapid switchover of an enterprise resource planning systems inside the company. The paper examines, through theoretical analysis, messaging as a possible enabler of distributing applications and how it naturally fits an event based model, whereby system transitions and states are expressed through recorded behaviours. This is put into practice by analysing the implemented migration systems and how the core components, MassTransit, RabbitMQ and MongoDB, were orchestrated together to realize such a system. As a result, the paper presents an architecture for a scalable and distributed system that could migrate hundreds of thousands of documents over weekend, serving its goals in enabling a rapid system switchover.
Resumo:
Ambitious energy targets set by EU put pressures to increase share of renewable electricity supply in this and next decades and therefore, some EU member countries have boosted increasing renewable energy generation capacity by implementing subsidy schemes on national level. In this study, two different change approaches to increase renewable energy supply and increase self-sufficiency of supply are assessed with respect to their impacts on power system, electricity market and electricity generation costs in Finland. It is obtained that the current electricity generation costs are high compared to opportunities of earnings from present-day investor’s perspective. In addition, the growth expectations of consumptions and the price forecasts do not stimulate investing in new generation capacity. Revolutionary transition path is driven by administrative and political interventions to achieve the energy targets. Evolutionary transition path is driven by market-based mechanisms, such as market itself and emission trading scheme. It is obtained in this study that in the revolutionary transition path operation of market-based mechanisms is distorted to some extent and it is likely that this path requires providing more public financial resources compared to evolutionary transition path. In the evolutionary transition path the energy targets are not achieved as quickly but market-based mechanisms function better and investment environment endures more stable compared to revolutionary transition path.
Resumo:
The interaction mean free path between neutrons and TRISO particles is simulated using scripts written in MATLAB to solve the increasing error present with an increase in the packing factor in the reactor physics code Serpent. Their movement is tracked both in an unbounded and in a bounded space. Their track is calculated, depending on the program, linearly directly using the position vectors of the neutrons and the surface equations of all the fuel particles; by dividing the space in multiple subspaces, each of which contain a fraction of the total number of particles, and choosing the particles from those subspaces through which the neutron passes through; or by choosing the particles that lie within an infinite cylinder formed on the movement axis of the neutron. The estimate from the current analytical model, based on an exponential distribution, for the mean free path, utilized by Serpent, is used as a reference result. The results from the implicit model in Serpent imply a too long mean free path with high packing factors. The received results support this observation by producing, with a packing factor of 17 %, approximately 2.46 % shorter mean free path compared to the reference model. This is supported by the packing factor experienced by the neutron, the simulation of which resulted in a 17.29 % packing factor. It was also observed that the neutrons leaving from the surfaces of the fuel particles, in contrast to those starting inside the moderator, do not follow the exponential distribution. The current model, as it is, is thus not valid in the determination of the free path lengths of the neutrons.
Resumo:
The objective of this thesis was to study the effect of pulsed electric field on the preparation of TiO2 nanoparticles via sol-gel method. The literature part deals with properties of different TiO2 crystal forms, principles of photocatalysis, sol-gel method and pulsed electric field processing. It was expected that the pulsed electric field would have an influence on crystallite size, specific surface area, polymorphism and photocatalytic activity of produced particles. TiO2 samples were prepared by using different frequencies and treatment times of pulsed electric field. The properties of produced TiO2 particles were examined X-ray diffraction (XRD), Raman spectroscopy and BET surface area analysis. The photocatalytic activities of produced TiO2 particles were determined by using them as photocatalysts for the degradation of formic acid under UVA-light. The photocatalytic activities of samples produced with sol-gel method were also compared with the commercial TiO2 powder Aeroxide® (Evonic Degussa GmbH). Pulsed electric field did not have an effect on the morphology of particles. Results from XRD and Raman analysis showed that all produced TiO2 samples were pure anatase. However, pulsed electric field did have an effect on crystallite size, specific surface area and photocatalytic activity of TiO2 particles. Generally, the crystallite sizes were smaller, specific surface areas larger and initial formic acid degradation rates higher for samples that were produced by applying the pulsed electric field. The higher photocatalytic activities were attributed to larger surface areas and smaller crystallite sizes. Though, with all of the TiO2 samples produced by the sol-gel method the initial formic acid degradation rates were significantly slower than with the commercial TiO2 powder.