21 resultados para Catalyst Particles
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
In the theory part the membrane emulsification was studied. Emulsions are used in many industrial areas. Traditionally emulsions are prepared by using high shear in rotor-stator systems or in high pressure homogenizer systems. In membrane emulsification two immiscible liquids are mixed by pressuring one liquid through the membrane into the other liquid. With this technique energy could be saved, more homogeneous droplets could be formed and the amount of surfactant could be decreased. Ziegler-Natta and single-site catalysts are used in olefin polymerization processes. Nowadays, these catalysts are prepared according to traditional mixing emulsification. More homogeneous catalyst particles that have narrower particle size distribution might be prepared with membrane emulsification. The aim of the experimental part was to examine the possibility to prepare single site polypropylene catalyst using membrane emulsification technique. Different membrane materials and solidification techniques of the emulsion were examined. Also the toluene-PFC phase diagram was successfully measured during this thesis work. This phase diagram was used for process optimization. The polytetrafluoroethylene membranes had the largest contact angles with toluene and also the biggest difference between the contact angles measured with PFC and toluene. Despite of the contact angle measurement results no significant difference was noticed between particles prepared using PTFE membrane or metal sinter. The particle size distributions of catalyst prepared in these tests were quite wide. This would probably be fixed by using a membrane with a more homogeneous pore size distribution. It is also possible that the solidification rate has an effect on the particle sizes and particle morphology. When polymeric membranes are compared PTFE is probably still the best material for the process as it had the best chemical durability.
Resumo:
Tässä työssä tutkittiin erilaisten sisäisten donorien vaikutusta polypropeenin ominaisuuksiin käytettäessä Ziegler-Natta-katalyyttiä, joka valmistettiin Borealiksen aiemmin kehittämällä kaksifaasimenetelmällä. Tällä uudella menetelmällä katalyytti voidaan valmistaa ilman lisättyä sisäistä donoria ja kantajaa. Katalyyttihiukkaset saadaan kaksifaasisysteemin ansiosta muodoltaan pyöreiksi. Työn kokeellisessa osassa valmistettiin erilaisia Mg-komplekseja, jossa sisäinen donori muodostuu in-situ alkoholin ja karboksyylihappokloridin reagoidessa keskenään. Katalyyttisynteesissä Mg-kompleksi reagoi TiCl4:n kanssa. Saatujen katalyyttien ominaisuuksia testattiin polymeroimalla niillä propeenia 70 °C:ssa tunnin ajan. Polymeerien ominaisuuksia tutkittiin useiden eri karakterisointimenetelmien avulla. Lisäksi tutkittiin mahdollisuutta valmistaa katalyytti, joka ei sisältäisi ftalaattia. Työssä havaittiin, että katalyytin valmistusmenetelmä on käyttökelpoinen myös muilla sisäisillä donoreilla kuin referenssinä käytetyllä DOP:lla. Kaksiliuosfaasi-systeemi saatiin aikaan myös kahdella muulla työssä tutkitulla sisäisellä donorilla. Lisäksi faasitasapainokokeissa kahden liuosfaasin systeemi saatiin aikaan sisäisellä donorilla, joka ei sisältänyt ftalaattia. Kyseisellä katalyytillä havaittiin olevan muista katalyyteistä poikkeavia ominaisuuksia. Esimerkiksi se antoi matalamman isotaktisuuden kuin referenssikatalyytti ja se saattaisikin soveltua matalan isotaktisuuden pehmeille tuotteille. Työssä kokeiltiin yhdellä uudella katalyytillä myös eteenin polymerointia, sillä katalyytin donoripitoisuus oli hyvin matala. Katalyytin aktiivisuus eteenipolymeroinnissa oli varsin hyvä.
Resumo:
In the theoretical part, the different polymerisation catalysts are introduced and the phenomena related to mixing in the stirred tank reactor are presented. Also the advantages and challenges related to scale-up are discussed. The aim of the applied part was to design and implement an intermediate-sized reactor useful for scale-up studies. The reactor setting was tested making one batch of Ziegler–Natta polypropylene catalyst. The catalyst preparation with a designed equipment setting succeeded and the catalyst was analysed. The analyses of the catalyst were done, because the properties of the catalyst were compared to the normal properties of Ziegler–Natta polypropylene catalyst. The total titanium content of the catalyst was slightly higher than in normal Ziegler–Natta polypropylene catalyst, but the magnesium and aluminium content of the catalyst were in the normal level. By adjusting the siphonation tube and adding one washing step the titanium content of the catalyst could be decreased. The particle size of the catalyst was small, but the activity was in a normal range. The size of the catalyst particles could be increased by decreasing the stirring speed. During the test run, it was noticed that some improvements for the designed equipment setting could be done. For example more valves for the chemical feed line need to be added to ensure inert conditions during the catalyst preparation. Also nitrogen for the reactor needs to separate from other nitrogen line. With this change the pressure in the reactor can be kept as desired during the catalyst preparation. The proposals for improvements are presented in the applied part. After these improvements are done, the equipment setting is ready for start-up. The computational fluid dynamics model for the designed reactor was provided by cooperation with Lappeenranta University of Technology. The experiments showed that for adequate mixing with one impeller, stirring speed of 600 rpm is needed. The computational fluid dynamics model with two impellers showed that there was no difference in the mixing efficiency if the upper impeller were pumping downwards or upwards.
Resumo:
Oxidized starch is a key component in the paper industry, where it is used as both surfacing sizer and filler. Large quantities are annually used for this purpose; however, the methods for the oxidation are not environmentally friendly. In our research, we have studied the possibility to replace the harmful oxidation agents, such as hypochlorite or iodates and transition metal catalysts, with a more environmentally friendly oxidant, hydrogen peroxide (H2O2), and a special metal complex catalyst (FePcS), of which only a small amount is needed. The work comprised batch and semi-batch studies by H2O2, ultrasound studies of starch particles, determination of low-molecular by-products and determination of the decomposition kinetics of H2O2 in the presence of starch and the catalyst. This resulted in a waste-free oxidation method, which only produces water and oxygen as side products. The starch oxidation was studied in both semi-batch and batch modes in respective to the oxidant (H2O2) addition. The semi-batch mode proved to yield a sufficient degree of substitution (COOH groups) for industrial purposes. Treatment of starch granules by ultrasound was found to improve the reactivity of starch. The kinetic results were found out to have a rather complex pattern – several oxidation phases were observed, apparently due to the fact that the oxidation reaction in the beginning only took place on the surface, whereas after a prolonged reaction time, partial degradation of the solid starch granules allowed further reaction in the interior parts. Batch-mode experiments enabled a more detailed study of the mechanisms of starch in the presence of H2O2 and the catalyst, but yielded less oxidized starch due to rapid decomposition of H2O2 due to its high concentrations. The effect of the solid-liquid (S/L) ratio in the reaction system was studied in batch experiments. These studies revealed that the presence of the catalyst and the starch enhance the H2O2 decomposition.
Resumo:
Laktoosi eli maitosokeri on tärkein ainesosa useimpien nisäkkäiden tuottamassa maidossa. Sitä erotetaan herasta, juustosta ja maidosta. Laktoosia käytetään elintarvike- ja lääketeollisuuden raaka-aineena monissaeri tuotteissa. Lääketeollisuudessa laktoosia käytetään esimerkiksi tablettien täyteaineena. Hapettamalla laktoosia voidaan valmistaa laktobionihappoa, 2-keto-laktobionihappoa ja laktuloosia. Laktobionihappoa käytetään biohajoavien pintojen ja kosmetiikkatuotteiden valmistuksessa, sekä sisäelinten säilöntäliuoksissa, joissa laktobionihappo estää happiradikaalien aiheuttamien kudosvaurioiden syntymistä. Tässä työssä laktoosia hapetettiin laktobionihapoksi sekoittimella varustetussa laboratoriomittakaavaisessa panosreaktorissa käyttäenkatalyyttinä palladiumia aktiivihiilellä. Muutamissa kokeissa katalyytin promoottorina käytettiin vismuttia, joka hidastaa katalyytin deaktivoitumista. Työn tarkoituksena oli saada lisää tietoa laktoosin hapettamisen kinetiikasta. Laktoosin hapettumisessa laktobionihapoksi havaittiin selektiivisyyteen vaikuttavan muunmuassa reaktiolämpötila, paine, pH ja käytetyn katalyytin määrä. Katalyyttiä kierrättämällä eri kokeiden välillä saatiin paremmat konversiot, selektiivisyydet ja saannot. Parhaat koetulokset saatiin hapetettaessa synteettisellä ilmalla 60 oC lämpötilassa ja 1 bar paineessa. Tehdyissä kokeissa pH:n säätö tehtiin manuaalisesti, joten pH ei pysynyt koko ajan haluttuna. Laktoosin konversio oli parhaimmillaan 95 %. Laktobionihapon suhteellinen selektiivisyys oli 100% ja suhteellinen saanto 100 %. Kinetiikan matemaattinen mallinnus tehtiin Modest-ohjelmalla käyttäen kokeista saatuja mittaustuloksia.Ohjelman avulla estimoitiin parametreja ja saatiin matemaattinen malli reaktorille. Tässä työssä tehtiin kineettinen mallinnus myös ravistelureaktorissa tehdyille laktoosin hapetuskokeille, missä pH pysyi koko ajan haluttuna 'in-situ' titrauksen avulla. Työn yhteydessä selvitettiin myös mahdollisuutta käyttää monoliittikatalyyttejä laktoosin hapetusreaktiossa.
Resumo:
Dynamic behavior of bothisothermal and non-isothermal single-column chromatographic reactors with an ion-exchange resin as the stationary phase was investigated. The reactor performance was interpreted by using results obtained when studying the effect of the resin properties on the equilibrium and kinetic phenomena occurring simultaneously in the reactor. Mathematical models were derived for each phenomenon and combined to simulate the chromatographic reactor. The phenomena studied includes phase equilibria in multicomponent liquid mixture¿ion-exchange resin systems, chemicalequilibrium in the presence of a resin catalyst, diffusion of liquids in gel-type and macroporous resins, and chemical reaction kinetics. Above all, attention was paid to the swelling behavior of the resins and how it affects the kinetic phenomena. Several poly(styrene-co-divinylbenzene) resins with different cross-link densities and internal porosities were used. Esterification of acetic acid with ethanol to produce ethyl acetate and water was used as a model reaction system. Choosing an ion-exchange resin with a low cross-link density is beneficial inthe case of the present reaction system: the amount of ethyl acetate as well the ethyl acetate to water mole ratio in the effluent stream increase with decreasing cross-link density. The enhanced performance of the reactor is mainly attributed to increasing reaction rate, which in turn originates from the phase equilibrium behavior of the system. Also mass transfer considerations favor the use ofresins with low cross-link density. The diffusion coefficients of liquids in the gel-type ion-exchange resins were found to fall rapidly when the extent of swelling became low. Glass transition of the polymer was not found to significantlyretard the diffusion in sulfonated PS¿DVB ion-exchange resins. It was also shown that non-isothermal operation of a chromatographic reactor could be used to significantly enhance the reactor performance. In the case of the exothermic modelreaction system and a near-adiabatic column, a positive thermal wave (higher temperature than in the initial state) was found to travel together with the reactive front. This further increased the conversion of the reactants. Diffusion-induced volume changes of the ion-exchange resins were studied in a flow-through cell. It was shown that describing the swelling and shrinking kinetics of the particles calls for a mass transfer model that explicitly includes the limited expansibility of the polymer network. A good description of the process was obtained by combining the generalized Maxwell-Stefan approach and an activity model that was derived from the thermodynamics of polymer solutions and gels. The swelling pressure in the resin phase was evaluated by using a non-Gaussian expression forthe polymer chain length distribution. Dimensional changes of the resin particles necessitate the use of non-standard mathematical tools for dynamic simulations. A transformed coordinate system, where the mass of the polymer was used as a spatial variable, was applied when simulating the chromatographic reactor columns as well as the swelling and shrinking kinetics of the resin particles. Shrinking of the particles in a column leads to formation of dead volume on top of the resin bed. In ordinary Eulerian coordinates, this results in a moving discontinuity that in turn causes numerical difficulties in the solution of the PDE system. The motion of the discontinuity was eliminated by spanning two calculation grids in the column that overlapped at the top of the resin bed. The reactive and non-reactive phase equilibrium data were correlated with a model derived from thethermodynamics of polymer solution and gels. The thermodynamic approach used inthis work is best suited at high degrees of swelling because the polymer matrixmay be in the glassy state when the extent of swelling is low.
Resumo:
Combustion of wood is increasing because of the needs of decreasing the emissions of carbon dioxide and the amount of waste going to landfills. Wood based fuels are often scattered on a large area. The transport distances should be short enough to prevent too high costs, and so the size of heating and power plants using wood fuels is often rather small. Combustion technologies of small-size units have to be developed to reach efficient and environmentally friendly energy production. Furnaces that use different packed bed combustion or gasification techniques areoften most economic in small-scale energy production. Ignition front propagation rate affects the stability, heat release rate and emissions of packed bed combustion. Ignition front propagation against airflow in packed beds of wood fuels has been studied. The research has been carried out mainly experimentally. Theoretical aspects have been considered to draw conclusions about the experimental results. The effects of airflow rate, moisture content of the fuel, size, shape and density of particles, and porosity of the bed on the propagation rate of the ignition front have been studied. The experiments were carried out in a pot furnace. The fuels used in the experiments were mainly real wood fuels that are often burned in the production of energy. The fuel types were thin wood chips, saw dust, shavings, wood chips, and pellets with different sizes. Also a few mixturesof the above were tested. Increase in the moisture content of the fuel decreases the propagation rates of the ignition front and makes the range of possible airflow rates narrower because of the energy needed for the evaporation of water and the dilution of volatile gases due to evaporated steam. Increase in the airflow rate increases the ignition rate until a maximum rate of propagation is reached after which it decreases. The maximum flame propagation rate is not always reached in stoichiometric combustion conditions. Increase in particle size and density transfers the optimum airflow rate towards fuel lean conditions. Mixing of small and large particles is often advantageous, because small particles make itpossible to reach the maximum ignition rate in fuel rich conditions, and large particles widen the range of possible airflow rates. A correlation was found forthe maximum rate of ignition front propagation in different wood fuels. According to the correlation, the maximum ignition mass flux is increased when the sphericity of the particles and the porosity of the bed are increased and the moisture content of the fuel is decreased. Another fit was found between sphericity and porosity. Increase in sphericity decreases the porosity of the bed. The reasons of the observed results are discussed.
Resumo:
Porous silicon (PSi) is a promising material to be utilized in drug delivery formulations. The release rate of the drug compound can be controlled by changing the pore properties and surface chemistry of PSi. The loading of a poorly soluble drug into mesoporous silicon particles enhances its dissolution in the body. The drug loading is based on adsorption. The attainable maximum loaded amount depends on the properties of the drug compound and the PSi material, and on the process conditions. The loading solvent also essentially affects the adsorption process. The loading of indomethacin into PSi particles with varying surface modification was studied. Solvent mixtures were applied in the loading, and the loaded samples were analyzed with thermal analysis methods. The best degree of loading was obtained using a mixture of dichloromethane and methanol. The drug loads varied from 7.7 w-% to 26.8 w-%. A disturbing factor in the loading experiments was the tendency of indomethacin to form solvates with the solvents applied. In addition, the physical form and stability of indomethacin loaded in PSi and silica particles were studied using Raman spectroscopy. In the case of silica, the presence of crystalline drug as well as the polymorph form can be detected, but the method proved to be not applicable for PSi particles.
Resumo:
Coating and filler pigments have strong influence to the properties of the paper. Filler content can be even over 30 % and pigment content in coating is about 85-95 weight percent. The physical and chemical properties of the pigments are different and the knowledge of these properties is important for optimising of optical and printing properties of the paper. The size and shape of pigment particles can be measured by different analysers which can be based on sedimentation, laser diffraction, changes in electric field etc. In this master's thesis was researched particle properties especially by scanning electron microscope (SEM) and image analysis programs. Research included nine pigments with different particle size and shape. Pigments were analysed by two image analysis programs (INCA Feature and Poikki), Coulter LS230 (laser diffraction) and SediGraph 5100 (sedimentation). The results were compared to perceive the effect of particle shape to the performance of the analysers. Only image analysis programs gave parameters of the particle shape. One part of research was also the sample preparation for SEM. Individual particles should be separated and distinct in ideal sample. Analysing methods gave different results but results from image analysis programs corresponded even to sedimentation or to laser diffraction depending on the particle shape. Detailed analysis of the particle shape required high magnification in SEM, but measured parameters described very well the shape of the particles. Large particles (ecd~1 µm) could be used also in 3D-modelling which enabled the measurement of the thickness of the particles. Scanning electron microscope and image analysis programs were effective and multifunctional tools for particle analyses. Development and experience will devise the usability of analysing method in routine use.
Resumo:
Dirt counting and dirt particle characterisation of pulp samples is an important part of quality control in pulp and paper production. The need for an automatic image analysis system to consider dirt particle characterisation in various pulp samples is also very critical. However, existent image analysis systems utilise a single threshold to segment the dirt particles in different pulp samples. This limits their precision. Based on evidence, designing an automatic image analysis system that could overcome this deficiency is very useful. In this study, the developed Niblack thresholding method is proposed. The method defines the threshold based on the number of segmented particles. In addition, the Kittler thresholding is utilised. Both of these thresholding methods can determine the dirt count of the different pulp samples accurately as compared to visual inspection and the Digital Optical Measuring and Analysis System (DOMAS). In addition, the minimum resolution needed for acquiring a scanner image is defined. By considering the variation in dirt particle features, the curl shows acceptable difference to discriminate the bark and the fibre bundles in different pulp samples. Three classifiers, called k-Nearest Neighbour, Linear Discriminant Analysis and Multi-layer Perceptron are utilised to categorize the dirt particles. Linear Discriminant Analysis and Multi-layer Perceptron are the most accurate in classifying the segmented dirt particles by the Kittler thresholding with morphological processing. The result shows that the dirt particles are successfully categorized for bark and for fibre bundles.
Resumo:
En djupare förståelse för växelverkan mellan partiklar i suspensioner är av betydelse för utvecklingen av en mängd olika industriella produkter och processer. Till exempel kan nämnas pigmentbaserade färger och bestrykning av papper. Genom att öka kontrollbarheten kan dessa lättare optimeras för att uppnå förbättrade produktegenskaper och/eller sänkta produktionskostnader. Av stor betydelse är även en förbättrad möjlighet att minska produktens miljöpåverkan. I avhandlingen studerades jonstyrkan och jonspecificiteten inverkan i olika akvatiska suspensioner innehållande olika elektrolyter. De partiklar som avhandlingen omfattade var metalloxider, leror samt latex. Jonstyrkan studerades från låga (c <10-3M) till och med höga (c> 10-1M) elektrolytkoncentrationer. Vid koncentrationer under 0.1 M var partikelladdningen styrd av pH och jonstyrkan. Vid högre elektrolytkoncentrationer påverkade även jonspecificiteten partikelladdningen. Jonspecificiteten arrangerades i fenomenologiska serier funna i litteraturen samt med Born modellen definierad i termodynamiken. Överraskande höga absoluta zeta-potential värden erhölls vid höga elektrolytkoncentrationer vilket visar att den elektrostatiska repulsionen har betydelse även vid dessa förhållanden. Vidare studerades titanoxidsuspensioners egenskaper i akvatiska, icke-akvatiska och blandade lösningssystem under varierande koncentration av oxal- och fosfatsyra. Vid lågt vatteninnehåll studerades även suspensioner med svavelsyra. Konduktiviteten i suspensioner med lågt vatteninnehåll ökade med tillsatt oxal- eller fosforsyra vilket är en omvänd effekt jämfört med svavelsyra eller akvatiska suspensioner. Den omvända effekten skiftade gradvis tillbaka med ökad vatteninnehåll. En analys av suspensionernas adsorption i höga etanolkoncentrationer gjordes med konduktiviteten, pH och zeta-potentialen. Viskositet studerades och applicerades framgångsrikt i viskositet/ytladdningsmodeller utvecklade för akvatiska suspensioner.
Resumo:
-
Resumo:
Traditionellt har man ansett att Ziegler-Natta katalysatorer för framställning av polypropen bör ha stor inre yta och hög porositet för att ge hög aktivitet och bra polymerpartikelmorfologi. Den av Borealis utvecklade Sirius emulsionsbaserade katalysatortillverkningsteknologin ger katalysatorer utan mätbar inre yta och porositet. Katalysatorn ger, trots sin kompakthet, polymerpartiklar med utmärkt morfologi och har hög aktivitet. Sirius katalysatorns prestanda, beträffande polymerisationskinetik och polymerstruktur, undersöktes i detta doktorsarbete. En jämn och kontrollerad tidig fragmentering av katalysatorn är av största vikt för att uppnå bra partikelmorfologi i en kommersiell process. Det visades att fragmenteringen av Sirius katalysatorn under de första sekunderna och minuterna av reaktionen framskred på ett homogent sätt. Oligomerhalten i den slutliga produkten är viktig i många applikationer, tex. i applikationer där polymeren kommer i kontakt med mat. Polymerer producerade med Sirius katalysatorn hade en låg oligomerhalt på grund av den smala molekylviktsfördelningen. Analys av kedjeändorna avslöjade att Sirius katalysatorn hade en hög frekvens av kedjeöverföring till monomer, vilket förklarade Sirius katalysatorns något begränsade förmåga att producera polymerer med hög molekylvikt. Sampolymerer av propen och eten producerade med Sirius uppvisade jämnare eten fördelning mellan långa och korta kedjor samt en mera randomiserad fördelning av eten längs med kedjorna än med den konventionella referenskatalysatorn. Tillsammans med den smala molekylviktsfördelningen indikerade resultaten att fördelningen av typer av aktiva centrum i Sirius katalysatorn är smal. Då man producerar polypropen med hög slagseghet skall polymerpartiklarna ha hög porositet för att kunna ackumulera eten/propen gummit. SiO2 nanopartiklar tillsatta under framställningen av Sirius katalysatorn ökade polymerpartikelns porositet, vilket möjliggjorde en dramatisk ökning av gummihalten.
Resumo:
The acceleration of solar energetic particles (SEPs) by flares and coronal mass ejections (CMEs) has been a major topic of research for the solar-terrestrial physics and geophysics communities for decades. This thesis discusses theories describing first-order Fermi acceleration of SEPs through repeated crossings at a CME-driven shock. We propose that particle trapping occurs through self-generated Alfvén waves, leading to a turbulent trapping region in front of the shock. Decelerating coronal shocks are shown to be capable of efficient SEP acceleration, provided seed particle injection is sufficient. Quasi-parallel shocks are found to inject thermal particles with good efficiency. The roles of minimum injection velocities, cross-field diffusion, downstream scattering efficiency and cross-shock potential are investigated in detail, with downstream isotropisation timescales having a major effect on injection efficiency. Accelerated spectra of heavier elements up to iron are found to exhibit significantly harder spectra than protons. Accelerated spectra cut-off energies are found to scale proportional to (Q/A)1.5, which is explained through analysis of the spectral shape of amplified Alfvénic turbulence. Acceleration times to different threshold energies are found to be non-linear, indicating that self-consistent time-dependent simulations are required in order to expose the full extent of acceleration dynamics. The well-established quasilinear theory (QLT) of particle scattering is investigated by comparing QLT scattering coefficients with those found via full-orbit simulations. QLT is found to overemphasise resonance conditions. This finding supports the simplifications implemented in the presented coronal shock acceleration (CSA) simulation software. The CSA software package is used to simulate a range of acceleration scenarios. The results are found to be in agreement with well-established particle acceleration theory. At the same time, new spatial and temporal dynamics of particle population trapping and wave evolution are revealed.