10 resultados para ATHEROMATOUS PLAQUES
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Various studies suggest that oxidative modifications of low density lipoprotein (LDL), and also other lipoproteins, have an important role in the development of atherosclerosis. In addition to the oxidation products formed endogenously, oxidised triacylglycerols (TAG) and oxysterols in the diet contribute to the oxidised lipoproteins found in circulation. However, studies on both the effect of oxidised dietary lipids on lipoprotein lipid oxidation and the reactions that modify oxidised fat after ingestion have been scarce. Studies on the effects of dietary antioxidants on the lipid oxidation in vivo and the risk of atherosclerosis have been inconclusive. More clinical trials are needed to test the importance of lipoprotein oxidation as a cardiovascular risk factor in humans. In the recent years, various methods have been optimised and applied to the analysis of lipid oxidation products in vivo, and information on the molecular structures of oxidised lipids in plasma, lipoproteins and atherosclerotic plaques has started to accumulate. However, specific structures of oxidised TAG molecules present in these tissues and lipoprotein fractions have not been investigated earlier. In the orginal research in this thesis, an approach based on highperformance liquid chromatographyelectrospray ionisationmass spectrometry (HPLCESIMS) and baseline diene conjugation (BDC) methods was used in order to investigate lipid oxidation level and oxidised TAG molecular structures in pig and human lipoproteins after dietary interventions. The approach was optimised with human LDL samples, which contained various oxidation products of TAG. LDL particles of hyperlipidaemic subjects contained an elevated amount of conjugated dienes. In the pig studies, several oxidised TAG structures with hydroxy, keto, epoxy or aldehydic groups were found in chylomicrons and VLDL after diets rich in sunflower seed oil. Also, the results showed that oxidised sunflower seed oil increased the oxidation of lipoprotein lipids and their TAG molecules. TAG hydroperoxides could be detected neither in the small intestinal mucosa of the pigs fed on the oxidised oil nor in their chylomicrons or VLDL.6 In the clinical studies, dietary flavonol aglycones extracted from sea buckthorn berries did not have an effect on lipoprotein lipid oxidation and other potential risk factors of atherosclerosis, but their absorption was demonstrated. Oil supplementation seemed to increase the bioavailability of the flavonols. Oxidised TAG molecules were detected in LDL particles of the subjects after both flavonol and control diets.
Resumo:
Atherosclerosis is a vascular inflammatory disease causing coronary artery disease, myocardial infarct and stroke, the leading causes of death in Finland and in many other countries. The development of atherosclerotic plaques starts already in childhood and is an ongoing process throughout life. Rupture of a plaque and the following occlusion of the vessel is the main reason for myocardial infarct and stroke, but despite extensive research, the prediction of rupture remains a major clinical problem. Inflammation is considered a key factor in the vulnerability of plaques to rupture. Measuring the inflammation in plaques non-invasively is one potential approach for identification of vulnerable plaques. The aim of this study was to evaluate tracers for positron emission tomography (PET) imaging of vascular inflammation. The studies were performed with a mouse model of atherosclerosis by using ex vivo biodistribution, autoradiography and in vivo PET and computed tomography (CT). Several tracers for inflammation activity were tested and compared with the morphology of the plaques. Inflammation in the atherosclerotic plaques was evaluated as expression of active macrophages. Systematic analysis revealed that the uptake of 18F-FDG and 11C-choline, tracers for metabolic activity in inflammatory cells, was more prominent in the atherosclerotic plaques than in the surrounding healthy vessel wall. The tracer for αvβ3 integrin, 18Fgalacto- RGD, was also found to have high potential for imaging inflammation in the plaques. While 11C-PK11195, a tracer targeted to receptors in active macrophages, was shown to accumulate in active plaques, the target-to-background ratio was not found to be ideal for in vivo imaging purposes. In conclusion, tracers for the imaging of inflammation in atherosclerotic plaques can be tested in experimental pre-clinical settings to select potential imaging agents for further clinical testing. 18F-FDG, 18F-galacto-RGD and 11C-choline choline have good properties, and further studies to clarify their applicability for atherosclerosis imaging in humans are warranted.
Resumo:
Asbesti on yleisnimike kuitumaisille silikaattimineraaleille. Sillä on monia hyviä ominaisuuksia. Siksi sitä on käytetty useisiin eri käyttötarkoituksiin jo yli 4 000 vuoden ajan. Sisäänhengitettynä asbesti aiheuttaa kuitenkin vakavia terveyshaittoja, mm. asbestoosia, keuhkosyöpää ja mesotelioomaa. Vuosina 1918-1988 Suomessa käytettiin asbestia 300 000 tonnia. Yleisintä käyttö oli 1960-70-lukujen vaihteessa. Sairauksien viive altistumisesta on 10-40 vuotta. Sairauksien esiintyminen onkin nyt suurimmillaan. Suurin osa sairauksista on hyvänlaatuisia keuhkopussin paksuuntumia eli plakkeja. Vuosittain asbestin aiheuttamiin sairauksiin, etupäässä syöpiin, kuolee Suomessa noin 100 ihmistä. Yhteensä altistuneita arvellaan olevan 250 000. Heistä elossa on noin 50 000. Vaarallisuutensa vuoksi asbestin käyttö on useissa maissa kielletty, mutta maailmalla sitä käytetään edelleen suuria määriä. Suomessa asbestin käyttöä rajoitettiin jo 1970-luvulla. Pieniä poikkeuksia lukuun ottamatta täyskielto tuli voimaan 1.1.1994. Suomessa asbestia esiintyy edelleen vanhoissa rakennuksissa. Asbestipurkutyö on luvanvaraista. Asbestitöissä on huolehdittava siitä, että kukaan ei altistu asbestille. Asbestipitoisen materiaalin tunnistaminen silmämääräisesti on vaikeaa. Materiaali luokitellaan asbestipitoiseksi, jos siinä on asbestia yli 1 painoprosenttia tai jos sitä voidaan pölyävyytensä takia pitää vaarallisena. Asbestipitoisen materiaalin kartoituksessa voidaan käyttää rakennussuunnitelmia, vanhoja asiakirjoja kuten urakoitsijan laskuja sekä tuntemusta rakennusajan yleisistä rakennustavoista. Varmuus saadaan kuitenkin vain tutkimalla materiaali esimerkiksi laboratoriokokeissa. Tässä diplomityössä on pyritty selvittämään, voidaanko asbesti tunnistaa ChemPro 100 -keinonenällä. Laite perustuu ioniliikkuvuusspektrometriaan eli eri yhdisteiden erilaiseen liikkuvuuteen kaasumaisessa väliaineessa. Menetelmä on nopea ja yksinkertainen. Tutkimusta varten hankittiin asbestipitoisia materiaaleja, joista saatuja tuloksia vertailtiin toisiinsa. Nykyiset asbestintunnistusmenetelmät ovat monimutkaisia ja hitaita. Jos keinonenä pystyttäisiin kouluttamaan tunnistamaan asbestimateriaali, helpottaisi se asbestikartoituksen tekemistä.
Resumo:
Alzheimer`s disease (AD) is characterised neuropathologically by the presence of extracellular amyloid plaques, intraneuronal neurofibrillary tangles, and cerebral neuronal loss. The pathological changes in AD are believed to start even decades before clinical symptoms are detectable. AD gradually affects episodic memory, cognition, behaviour and the ability to perform everyday activities. Mild cognitive impairment (MCI) represents a transitional state between normal aging and dementia disorders, especially AD. The predictive accuracy of the current and commonly used MCI criteria devide this disorder into amnestic (aMCI) and non-amnestic (naMCI) MCI. It seems that many individuals with aMCI tend to convert to AD. However many MCI individuals will remain stable and some may even recover. At present, the principal drugs for the treatment of AD provide only symptomatic and palliative benefits. Safe and effective mechanism-based therapies are needed for this devastating neurodegenerative disease of later life. In conjunction with the development of new therapeutic drugs, tools for early detection of AD would be important. In future one of the challenges will be to detect at an early stage these MCI individuals who will convert to AD. Methods which can predict which MCI subjects will convert to AD will be much more important if the new drug candidates prove to have disease-arresting or even disease–slowing effects. These types of drugs are likely to have the best efficacy if administered in the early or even in the presymptomatic phase of the disease when the synaptic and neuronal loss has not become too widespread. There is no clinical method to determine with certainly which MCI individuals will progress to AD. However there are several methods which have been suggested as predictors of conversion to AD, e.g. increased [11C] PIB uptake, hippocampal atrophy in MRI, low CSF A beta 42 level, high CSF tau-protein level, apolipoprotein E (APOE) ε4 allele and impairment in episodic memory and executive functions. In the present study subjects with MCI appear to have significantly higher [11C] PIB uptake vs healthy elderly in several brain areas including frontal cortex, the posterior cingulate, the parietal and lateral temporal cortices, putamen and caudate. Also results from this PET study indicate that over time, MCI subjects who display increased [11C] PIB uptake appear to be significantly more likely to convert to AD than MCI subjects with negative [11C] PIB retention. Also hippocampal atrophy seems to increase in MCI individuals clearly during the conversion to AD. In this study [11C] PIB uptake increases early and changes relatively little during the AD process whereas there is progressive hippocampal atrophy during the disease. In addition to increased [11C] PIB retention and hippocampal atrophy, the status of APOE ε4 allele might contribute to the conversion from MCI to AD.
Resumo:
Atherosclerosis is a life-long vascular inflammatory disease and the leading cause of death in Finland and in other western societies. The development of atherosclerotic plaques is progressive and they form when lipids begin to accumulate in the vessel wall. This accumulation triggers the migration of inflammatory cells that is a hallmark of vascular inflammation. Often, this plaque will become unstable and form vulnerable plaque which may rupture causing thrombosis and in the worst case, causing myocardial infarction or stroke. Identification of these vulnerable plaques before they rupture could save lives. At present, in the clinic, there exists no appropriated, non-invasive method for their identification. The aim of this thesis was to evaluate novel positron emission tomography (PET) probes for the detection of vulnerable atherosclerotic plaques and to characterize, two mouse models of atherosclerosis. These studies were performed by using ex vivo and in vivo imaging modalities. The vulnerability of atherosclerotic plaques was evaluated as expression of active inflammatory cells, namely macrophages. Age and the duration of high-fat diet had a drastic impact on the development of atherosclerotic plaques in mice. In imaging of atherosclerosis, 6-month-old mice, kept on high-fat diet for 4 months, showed matured, metabolically active, atherosclerotic plaques. [18F]FDG and 68Ga were accumulated in the areas representative of vulnerable plaques. However, the slow clearance of 68Ga limits its use for the plaque imaging. The novel synthesized [68Ga]DOTA-RGD and [18F]EF5 tracers demonstrated efficient uptake in plaques as compared to the healthy vessel wall, but the pharmacokinetic properties of these tracers were not optimal in used models. In conclusion, these studies resulted in the identification of new strategies for the assessment of plaque stability and mouse models of atherosclerosis which could be used for plaque imaging. In the used probe panel, [18F]FDG was the best tracer for plaque imaging. However, further studies are warranted to clarify the applicability of [18F]EF5 and [68Ga]DOTA-RGD for imaging of atherosclerosis with other experimental models.
Resumo:
The application of computational fluid dynamics (CFD) and finite element analysis (FEA) has been growing rapidly in the various fields of science and technology. One of the areas of interest is in biomedical engineering. The altered hemodynamics inside the blood vessels plays a key role in the development of the arterial disease called atherosclerosis, which is the major cause of human death worldwide. Atherosclerosis is often treated with the stenting procedure to restore the normal blood flow. A stent is a tubular, flexible structure, usually made of metals, which is driven and expanded in the blocked arteries. Despite the success rate of the stenting procedure, it is often associated with the restenosis (re-narrowing of the artery) process. The presence of non-biological device in the artery causes inflammation or re-growth of atherosclerotic lesions in the treated vessels. Several factors including the design of stents, type of stent expansion, expansion pressure, morphology and composition of vessel wall influence the restenosis process. Therefore, the role of computational studies is crucial in the investigation and optimisation of the factors that influence post-stenting complications. This thesis focuses on the stent-vessel wall interactions followed by the blood flow in the post-stenting stage of stenosed human coronary artery. Hemodynamic and mechanical stresses were analysed in three separate stent-plaque-artery models. Plaque was modeled as a multi-layer (fibrous cap (FC), necrotic core (NC), and fibrosis (F)) and the arterial wall as a single layer domain. CFD/FEA simulations were performed using commercial software packages in several models mimicking the various stages and morphologies of atherosclerosis. The tissue prolapse (TP) of stented vessel wall, the distribution of von Mises stress (VMS) inside various layers of vessel wall, and the wall shear stress (WSS) along the luminal surface of the deformed vessel wall were measured and evaluated. The results revealed the role of the stenosis size, thickness of each layer of atherosclerotic wall, thickness of stent strut, pressure applied for stenosis expansion, and the flow condition in the distribution of stresses. The thicknesses of FC, and NC and the total thickness of plaque are critical in controlling the stresses inside the tissue. A small change in morphology of artery wall can significantly affect the distribution of stresses. In particular, FC is the most sensitive layer to TP and stresses, which could determine plaque’s vulnerability to rupture. The WSS is highly influenced by the deflection of artery, which in turn is dependent on the structural composition of arterial wall layers. Together with the stenosis size, their roles could play a decisive role in controlling the low values of WSS (<0.5 Pa) prone to restenosis. Moreover, the time dependent flow altered the percentage of luminal area with WSS values less than 0.5 Pa at different time instants. The non- Newtonian viscosity model of the blood properties significantly affects the prediction of WSS magnitude. The outcomes of this investigation will help to better understand the roles of the individual layers of atherosclerotic vessels and their risk to provoke restenosis at the post-stenting stage. As a consequence, the implementation of such an approach to assess the post-stented stresses will assist the engineers and clinicians in optimizing the stenting techniques to minimize the occurrence of restenosis.
Resumo:
The driving forces for current research of flame retardants are increased fire safety in combination with flame retardant formulations that fulfill the criteria of sustainable production and products. In recent years, important questions about the environmental safety of antimony, and in particular, brominated flame retardants have been raised. As a consequence of this, the current doctoral thesis work describes efforts to develop new halogen-free flame retardants that are based on various radical generators and phosphorous compounds. The investigation was first focused on compounds that are capable of generating alkyl radicals in order to study their role on flame retardancy of polypropylene. The family of azoalkanes was selected as the cleanest and most convenient source of free alkyl radicals. Therefore, a number of symmetrical and unsymmetrical azoalkanes of the general formula R-N=N-R’ were prepared. The experimental results show that in the series of different sized azocycloalkanes the flame retardant efficacy decreased in the following order: R = R´= cyclohexyl > cyclopentyl > cyclobutyl > cyclooctanyl > cyclododecanyl. However, in the series of aliphatic azoalkanes compounds, the efficacy decreased as followed: R = R´= n-alkyl > tert-butyl > tert-octyl. The most striking difference in flame retardant efficacy was observed in thick polypropylene plaques of 1 mm, e.g. azocyclohexane (AZO) had a much better flame retardant performance than did the commercial reference FR (Flamestab® NOR116) in thick PP sections. In addition, some of the prepared azoalkane flame retardants e.g. 4’4- bis(cyclohexylazocyclohexyl) methane (BISAZO) exhibited non-burning dripping behavior. Extrusion coating experiments of flame retarded low density polyethylene (LDPE) onto a standard machine finished Kraft paper were carried out in order to investigate the potential of azoalkanes in multilayer facings. The results show that azocyclohexane (AZO) and 4’4-bis (cyclohexylazocyclohexyl) methane (BISAZO) can significantly improve the flame retardant properties of low density polyethylene coated paper already at 0.5 wt.% loadings, provided that the maximum extrusion temperature of 260 oC is not exceeded and coating weight is kept low at 13 g/m2. In addition, various triazene-based flame retardants (RN1=N2-N3R’R’’) were prepared. For example, polypropylene samples containing a very low concentration of only 0.5 wt.% of bis- 4’4’-(3’3’-dimethyltriazene) diphenyl ether and other triazenes passed the DIN 4102-1 test with B2 classification. It is noteworthy that no burning dripping could be detected and the average burning times were very short with exceptionally low weight losses. Therefore, triazene compounds constitute a new and interesting family of radical generators for flame retarding of polymeric materials. The high flame retardant potential of triazenes can be attributed to their ability to generate various types of radicals during their thermal decomposition. According to thermogravimetric analysis/Fourier transform infrared spectroscopy/MS analysis, triazene units are homolytically cleaved into various aminyl, resonance-stabilized aryl radicals, and different CH fragments with simultaneous evolution of elemental nitrogen. Furthermore, the potential of thirteen aliphatic, aromatic, thiuram and heterocyclic substituted organic disulfide derivatives of the general formula R-S-S-R’ as a new group of halogen-free flame retardants for polypropylene films have been investigated. According to the DIN 4102- 1 standard ignitibility test, for the first time it has been demonstrated that many of the disulfides alone can effectively provide flame retardancy and self-extinguishing properties to polypropylene films at already very low concentrations of 0.5 wt.%. For the disulfide family, the highest FR activity was recorded for 5’5’-dithiobis (2-nitrobenzoic acid). Very low values for burning length (53 mm) and burning time (10 s) reflect significantly increased fire retardant performance of this disulfide compared to other compounds in this series as well as to Flamestab® NOR116. Finally, two new, phosphorus-based flame retardants were synthesized: P’P-diphenyl phosphinic hydrazide (PAH) and melamine phenyl phosphonate (MPhP). The DIN 4102-1 test and the more stringent UL94 vertical burning test (UL94 V) were used to assess the formulations ability to extinguish a flame once ignited. A very strong synergistic effect with azoalkanes was found, i.e. in combination with these radical generators even UL94 V0 rate could be obtained.
Resumo:
Alzheimer’s disease (AD) is the most common form of dementia. Characteristic changes in an AD brain are the formation of β-amyloid protein (Aβ) plaques and neurofibrillary tangles, though other alterations in the brain have also been connected to AD. No cure is available for AD and it is one of the leading causes of death among the elderly in developed countries. Liposomes are biocompatible and biodegradable spherical phospholipid bilayer vesicles that can enclose various compounds. Several functional groups can be attached on the surface of liposomes in order to achieve long-circulating target-specific liposomes. Liposomes can be utilized as drug carriers and vehicles for imaging agents. Positron emission tomography (PET) is a non-invasive imaging method to study biological processes in living organisms. In this study using nucleophilic 18F-labeling synthesis, various synthesis approaches and leaving groups for novel PET imaging tracers have been developed to target AD pathology in the brain. The tracers were the thioflavin derivative [18F]flutemetamol, curcumin derivative [18F]treg-curcumin, and functionalized [18F]nanoliposomes, which all target Aβ in the AD brain. These tracers were evaluated using transgenic AD mouse models. In addition, 18F-labeling synthesis was developed for a tracer targeting the S1P3 receptor. The chosen 18F-fluorination strategy had an effect on the radiochemical yield and specific activity of the tracers. [18F]Treg-curcumin and functionalized [18F]nanoliposomes had low uptake in AD mouse brain, whereas [18F]flutemetamol exhibited the appropriate properties for preclinical Aβ-imaging. All of these tracers can be utilized in studies of the pathology and treatment of AD and related diseases.
Resumo:
University of Turku, Faculty of Medicine, Department of Cardiology and Cardiovascular Medicine, Doctoral Programme of Clinical Investigation, Heart Center, Turku University Hospital, Turku, Finland Division of Internal Medicine, Department of Cardiology, Seinäjoki Central Hospital, Seinäjoki, Finland Heart Center, Satakunta Central Hospital, Pori, Finland Annales Universitatis Turkuensis Painosalama Oy, Turku, Finland 2015 Antithrombotic therapy during and after coronary procedures always entails the challenging establishment of a balance between bleeding and thrombotic complications. It has been generally recommended to patients on long-term warfarin therapy to discontinue warfarin a few days prior to elective coronary angiography or intervention to prevent bleeding complications. Bridging therapy with heparin is recommended for patients at an increased risk of thromboembolism who require the interruption of anticoagulation for elective surgery or an invasive procedure. In study I, consecutive patients on warfarin therapy referred for diagnostic coronary angiography were compared to control patients with a similar disease presentation without warfarin. The strategy of performing coronary angiography during uninterrupted therapeutic warfarin anticoagulation appeared to be a relatively safe alternative to bridging therapy, if the international normalized ratio level was not on a supratherapeutic level. In-stent restenosis remains an important reason for failure of long-term success after a percutaneous coronary intervention (PCI). Drug-eluting stents (DES) reduce the problem of restenosis inherent to bare metal stents (BMS). However, a longer delay in arterial healing may extend the risk of stent thrombosis (ST) far beyond 30 days after the DES implantation. Early discontinuation of antiplatelet therapy has been the most important predisposing factor for ST. In study II, patients on long-term oral anticoagulant (OAC) underwent DES or BMS stenting with a median of 3.5 years’follow-up. The selective use of DESs with a short triple therapy seemed to be safe in OAC patients, since late STs were rare even without long clopidogrel treatment. Major bleeding and cardiac events were common in this patient group irrespective of stent type. In order to help to predict the bleeding risk in patients on OAC, several different bleeding risk scorings have been developed. Risk scoring systems have also been used also in the setting of patients undergoing a PCI. In study III, the predictive value of an outpatient bleeding risk index (OBRI) to identify patients at high risk of bleeding was analysed. The bleeding risk seemed not to modify periprocedural or long-term treatment choices in patients on OAC after a percutaneous coronary intervention. Patients with a high OBRI often had major bleeding episodes, and the OBRI may be suitable for risk evaluation in this patient group. Optical coherence tomography (OCT) is a novel technology for imaging intravascular coronary arteries. OCT is a light-based imaging modality that enables a 12–18 µm tissue axial resolution to visualize plaques in the vessel, possible dissections and thrombi as well as, stent strut appositions and coverage, and to measure the vessel lumen and lesions. In study IV, 30 days after titanium-nitride-oxide (TITANOX)-coated stent implantation, the binary stent strut coverage was satisfactory and the prevalence of malapposed struts was low as evaluated by OCT. Long-term clinical events in patients treated with (TITANOX)-coated bio-active stents (BAS) and paclitaxel-eluting stents (PES) in routine clinical practice were examined in study V. At the 3-year follow-up, BAS resulted in better long-term outcome when compared with PES with an infrequent need for target vessel revascularization. Keywords: anticoagulation, restenosis, thrombosis, bleeding, optical coherence tomography, titanium
Resumo:
Atherosclerosis is a chronic and progressive disease of the vasculature. Increasing coronary atherosclerosis can lead to obstructive coronary artery disease (CAD) or myocardial infarction. Computed tomography angiography (CTA) allows noninvasive assessment of coronary anatomy and quantitation of atherosclerotic burden. Myocardial blood flow (MBF) can be accurately measured in absolute terms (mL/g/min) by positron emission tomography (PET) with [15O] H O as a radiotracer. We studied the coronary microvascular dysfunction as a risk factor for future coronary calcification in healthy young men by measuring the coronary flow reserve (CFR) which is the ratio between resting and hyperemic MBF. Impaired vasodilator function was not linked with accelerated atherosclerosis 11 years later. Currently, there is a global interest in quantitative PET perfusion imaging. We established optimal thresholds of [15O] H O PET perfusion for diagnosis of CAD (hyperemic MBF of 2.3 mL/g/min and CFR of 2.5) in the first multicenter study of this type (Turku, Amsterdam and Uppsala). In myocardial bridging a segment of the coronary artery travels inside the myocardium and can be seen as intramural course (CTA) or systolic compression (invasive coronary angiography). Myocardial bridging is frequently linked with proximal atherosclerotic plaques. We used quantitative [15O] H O PET perfusion to evaluate the hemodynamic effects of myocardial bridging. Myocardial bridging was not associated with decreased absolute MBF or increased atherosclerotic burden. Speckle tracking allows quantitative echocardiographic imaging of myocardial deformation. Speckle tracking during dobutamine stress echocardiography was feasible and comparable to subjective wall motion analysis in the diagnosis of CAD. In addition, it correctly risk stratified patients with multivessel disease and extensive ischemia.