146 resultados para dual-process model
Resumo:
In the literature survey retention mechanisms, factors effecting retention and microparticles were studied. Also commercial microparticle retention systems and means to measure retention were studied. Optical retention measurement with RPA and Lasentec FBRM was studied. The experimental part contains study of different cationic polyacrylamides, anionic silica, bentonite and new generation micropolymer. In these studies the dosage, dosing order and dosing history were changing factors. The experimental work was done with RPA-apparatus with which, the retention process can be followed in real time. In testing was found that silica yielded better retention, when dosed nontraditionally before the polymer. Also silica was very dependant on the polymer dosage. With bentonite good colloidal retention was achieved with relatively low doses. Unlike silica bentonite was not dependant on polymer dosage. The relation of bentonite and polymer dosage is more defining when high retention is wanted. With 3-component systems using bentonite very high retention was achieved. With silica no improvement in retention was found in 3-component systems compared to dual component systems.
Resumo:
The objectives of this thesis areto identify the best elements from Information Technology Infrastructure Library financial management for an international company. The elements need to be customized to fit existing elements and the thesis needs to provide implementation proposal. The new IT financial management needs to improve cost visibility and bring benefits to the company. In order to find the best elements for IT financial management, there needs to be a research to discover the companys business needs. The ITIL library is used to find answers and solutions to the companys issues in IT financial management. Other IT frameworks can and will be used as well, if they are able to work with ITIL model. ITIL consists from budgeting, accounting and charging in IT financial management, which all needs to be investigated. In addition more ITIL elements such as contract management and supplier management can be used, in order to make IT financial management work better.
Resumo:
In general, models of ecological systems can be broadly categorized as ’top-down’ or ’bottom-up’ models, based on the hierarchical level that the model processes are formulated on. The structure of a top-down, also known as phenomenological, population model can be interpreted in terms of population characteristics, but it typically lacks an interpretation on a more basic level. In contrast, bottom-up, also known as mechanistic, population models are derived from assumptions and processes on a more basic level, which allows interpretation of the model parameters in terms of individual behavior. Both approaches, phenomenological and mechanistic modelling, can have their advantages and disadvantages in different situations. However, mechanistically derived models might be better at capturing the properties of the system at hand, and thus give more accurate predictions. In particular, when models are used for evolutionary studies, mechanistic models are more appropriate, since natural selection takes place on the individual level, and in mechanistic models the direct connection between model parameters and individual properties has already been established. The purpose of this thesis is twofold. Firstly, a systematical way to derive mechanistic discrete-time population models is presented. The derivation is based on combining explicitly modelled, continuous processes on the individual level within a reproductive period with a discrete-time maturation process between reproductive periods. Secondly, as an example of how evolutionary studies can be carried out in mechanistic models, the evolution of the timing of reproduction is investigated. Thus, these two lines of research, derivation of mechanistic population models and evolutionary studies, are complementary to each other.
Resumo:
This research was motivated by the need to examine the potential application areas of process intensification technologies in Neste Oil Oyj. According to the company’s interest membrane reactor technology was chosen and applicability of this technology in refining industry was investigated. Moreover, Neste Oil suggested a project which is related to the CO2 capture from FCC unit flue gas stream. The flowrate of the flue gas is 180t/h and consist of approximately 14% by volume CO2. Membrane based absorption process (membrane contactor) was chosen as a potential technique to model CO2 capture from fluid catalytic cracking (FCC) unit effluent. In the design of membrane contactor, a mathematical model was developed to describe CO2 absorption from a gas mixture using monoethanole amine (MEA) aqueous solution. According to the results of literature survey, in the hollow fiber contactor for laminar flow conditions approximately 99 % percent of CO2 can be removed by using a 20 cm in length polyvinylidene fluoride (PDVF) membrane. Furthermore, the design of whole process was performed by using PRO/II simulation software and the CO2 removal efficiency of the whole process obtained as 97 %. The technical and economical comparisons among existing MEA absorption processes were performed to determine the advantages and disadvantages of membrane contactor technology.
Resumo:
Mix marketing and relationships marketing are two major approaches that often form a basis for organizational marketing planning. The superiority of these approaches has been debated for long without any rational conclusion. Lately there have been studies indicating that both of the major approaches are many times used side by side in marketing planning. There have been also studies suggesting that even combining the mix marketing and relationship marketing approaches might be possible. The aim of this thesis is to provide knowledge about the usage of mix marketing and relationship marketing approaches in organizations and possibilities in combining the approaches. Also a settlement of strengths, weaknesses and risks of combining is intended to provide. The objectives were met through the literature and a case study research. In the case study, interviews were conducted in order to gain a deeper knowledge about marketing planning in various organizations. Based on this study, the combining of the major marketing approaches will be possible and even recommended when keeping in mind few aspects which might cause some troubles in the combining process.
Resumo:
In this thesis the main objective is to examine and model configuration system and related processes. When and where configuration information is created in product development process and how it is utilized in order-delivery process? These two processes are the essential part of the whole configuration system from the information point of view. Empirical part of the work was done as a constructive research inside a company that follows a mass customization approach. Data models and documentation are created for different development stages of the configuration system. A base data model already existed for new structures and relations between these structures. This model was used as the basis for the later data modeling work. Data models include different data structures, their key objects and attributes, and relations between. Representation of configuration rules for the to-be configuration system was defined as one of the key focus point. Further, it is examined how the customer needs and requirements information can be integrated into the product development process. Requirements hierarchy and classification system is presented. It is shown how individual requirement specifications can be connected for physical design structure via features by developing the existing base data model further.
Resumo:
The purpose of this study was to develop co-operation between business units of the company operating in graphic industry. The development was done by searching synergy opportunities between these business units. The final aim was to form a business model, which is based on co-operation of these business units.The literature review of this thesis examines synergies and especially the process concerning the search and implementation of synergies. Also the concept of business model and its components are examined. The research was done by using qualitative research method. The main data acquiring method to the empirical part was theme interviews. The data was analyzed using thematisation and content analysis.The results of the study include seven identified possible synergies and a business model, which is based on the co-operation of the business units. The synergy opportunities are evaluated and the implementation order of the synergies is suggested. The presented synergies create the base for the proposed business model.
Resumo:
The purpose of this study is to view credit risk from the financier’s point of view in a theoretical framework. Results and aspects of the previous studies regarding measuring credit risk with accounting based scoring models are also examined. The theoretical framework and previous studies are then used to support the empirical analysis which aims to develop a credit risk measure for a bank’s internal use or a risk management tool for a company to indicate its credit risk to the financier. The study covers a sample of Finnish companies from 12 different industries and four different company categories and employs their accounting information from 2004 to 2008. The empirical analysis consists of six stage methodology process which uses measures of profitability, liquidity, capital structure and cash flow to determine financier’s credit risk, define five significant risk classes and produce risk classification model. The study is confidential until 15.10.2012.
Resumo:
The developing energy markets and rising energy system costs have sparked the need to find new forms of energy production and increase the self-sufficiency of energy production. One alternative is gasification, whose principles have been known for decades, but it is only recently when the technology has become a true alternative. However, in order to meet the requirements of modern energy production methods, it is necessary to study the phenomenon thoroughly. In order to understand the gasification process better and optimize it from the viewpoint of ecology and energy efficiency, it is necessary to develop effective and reliable modeling tools for gasifiers. The main aims of this work have been to understand gasification as a process and furthermore to develop an existing three-dimensional circulating fluidized bed modeling tool for modeling of gasification. The model is applied to two gasification processes of 12 and 50 MWth. The results of modeling and measurements have been compared and subsequently reviewed. The work was done in co-operation with Lappeenranta University of Technology and Foster Wheeler Energia Oy.
Resumo:
Chemical looping combustion (CLC) provides a promising technology to help cut carbon dioxide emissions. CLC is based on separated oxidation and reduction processes. Oxygen carrier, which is made from metal and supporting material, is in continuous recirculation between the air and fuel reactors. The CLC process does not require separation unit for carbon dioxide. The fuel reactor can produce an almost pure carbon dioxide feed which decrease costs of carbon capture and storage (CCS). The CLC method is one of the most promising ones for energy efficient carbon capture. A large amount of literature was examined for this study and from it the most promising methods and designs were chosen. These methods and designs were combined as reactor system design which was then sized during the making of this thesis. Sizing was done with a mathematical model that was further improved during the study.
Resumo:
Since the introduction of automatic orbital welding in pipeline application in 1961, significant improvements have been obtained in orbital pipe welding systems. Requirement of more productive welding systems for pipeline application forces manufacturers to innovate new advanced systems and welding processes for orbital welding method. Various methods have been used to make welding process adaptive, such as visual sensing, passive visual sensing, real-time intelligent control, scan welding technique, multi laser vision sensor, thermal scanning, adaptive image processing, neural network model, machine vision, and optical sensing. Numerous studies are reviewed and discussed in this Master’s thesis and based on a wide range of experiments which already have been accomplished by different researches the vision sensor are reported to be the best choice for adaptive orbital pipe welding system. Also, in this study the most welding processes as well as the most pipe variations welded by orbital welding systems mainly for oil and gas pipeline applications are explained. The welding results show that Gas Metal Arc Welding (GMAW) and its variants like Surface Tension Transfer (STT) and modified short circuit are the most preferred processes in the welding of root pass and can be replaced to the Gas Tungsten Arc Welding (GTAW) in many applications. Furthermore, dual-tandem gas metal arc welding technique is currently considered the most efficient method in the welding of fill pass. Orbital GTAW process mostly is applied for applications ranging from single run welding of thin walled stainless tubes to multi run welding of thick walled pipes. Flux cored arc welding process is faster process with higher deposition rate and recently this process is getting more popular in pipe welding applications. Also, combination of gas metal arc welding and Nd:YAG laser has shown acceptable results in girth welding of land pipelines for oil and gas industry. This Master’s thesis can be implemented as a guideline in welding of pipes and tubes to achieve higher quality and efficiency. Also, this research can be used as a base material for future investigations to supplement present finding.
Resumo:
This thesis considers modeling and analysis of noise and interconnects in onchip communication. Besides transistor count and speed, the capabilities of a modern design are often limited by on-chip communication links. These links typically consist of multiple interconnects that run parallel to each other for long distances between functional or memory blocks. Due to the scaling of technology, the interconnects have considerable electrical parasitics that affect their performance, power dissipation and signal integrity. Furthermore, because of electromagnetic coupling, the interconnects in the link need to be considered as an interacting group instead of as isolated signal paths. There is a need for accurate and computationally effective models in the early stages of the chip design process to assess or optimize issues affecting these interconnects. For this purpose, a set of analytical models is developed for on-chip data links in this thesis. First, a model is proposed for modeling crosstalk and intersymbol interference. The model takes into account the effects of inductance, initial states and bit sequences. Intersymbol interference is shown to affect crosstalk voltage and propagation delay depending on bus throughput and the amount of inductance. Next, a model is proposed for the switching current of a coupled bus. The model is combined with an existing model to evaluate power supply noise. The model is then applied to reduce both functional crosstalk and power supply noise caused by a bus as a trade-off with time. The proposed reduction method is shown to be effective in reducing long-range crosstalk noise. The effects of process variation on encoded signaling are then modeled. In encoded signaling, the input signals to a bus are encoded using additional signaling circuitry. The proposed model includes variation in both the signaling circuitry and in the wires to calculate the total delay variation of a bus. The model is applied to study level-encoded dual-rail and 1-of-4 signaling. In addition to regular voltage-mode and encoded voltage-mode signaling, current-mode signaling is a promising technique for global communication. A model for energy dissipation in RLC current-mode signaling is proposed in the thesis. The energy is derived separately for the driver, wire and receiver termination.
Resumo:
This study examined solution business models and how they could be applied into energy efficiency business. The target of this study was to find out, what a functional solution business model applied to energy efficiency improvement projects is like. The term “functionality” was used to refer not only to the economic viability but to environmental and legal aspects and also to the implement of Critical Success Factors (CSFs) and the ability to overcome the most important market barriers and risks. This thesis is based on a comprehensive literature study on solution business, business models and energy efficiency business. This literature review was used as a foundation to an energy efficiency solution business model scheme. The created scheme was tested in a case study which studied two different energy efficiency improvement projects, illustrated the functionality of the created business model and evaluated their potential as customer targets. Solution approach was found to be suitable for energy efficiency business. The most important characteristics of a good solution business model were identified to be the relationship between the supplier and customer, a proper network, knowledge on the customer’s process and supreme technological expertise. Thus the energy efficiency solution business was recognized to be particularly suitable for example for energy suppliers or technological equipment suppliers. Because the case study was not executed from a certain company’s point of view, the most important factors such as relationships and the availability of funding could not be evaluated. Although the energy efficiency business is recognized to be economically viable, the most important factors influencing the profitability and the success of energy efficiency solution business model were identified to be the proper risk management, the ability to overcome market barriers and the realization of CSFs.
Resumo:
Electrokinetic remediation coupled with Fenton oxidation, widely called as Electrokinetic Fenton process is a potential soil remediation technique used for low permeable soil. The applicability of the process has been proved with soil contaminated with a wide range of organic compounds from phenol to the most recalcitrant ones such as PAHs and POPs. This thesis summarizes the major findings observed during an Electrokinetic Fenton Process study conducted for the remediation of low permeable soil contaminated with HCB, a typical hydrophobic organic contaminant. Model low permeable soil, kaolin, was artificially contaminated with HCB and subjected to Electrokinetic Fenton treatments in a series of laboratory scale batch experiments. The use of cyclodextrins as an enhancement agent to mobilize the sorbed contaminant through the system was investigated. Major process hindrances such as the oxidant availability and treatment duration were also addressed. The HCB degradation along with other parameters like soil pH, redox and cumulative catholyte flow were analyzed and monitored. The results of the experiments strengthen the existing knowledge on electrokinetic Fenton process as a promising technology for the treatment of soil contaminated with hydrophobic organic compounds. It has been demonstrated that HCB sorbed to kaolin can be degraded by the use of high concentrations of hydrogen peroxide during such processes. The overall system performances were observed to be influenced by the point and mode of oxidant delivery. Furthermore, the study contributes to new knowledge in shortening the treatment duration by adopting an electrode polarity reversal during the process.
Resumo:
Climate change has given an impetus to research and developed new technologies to reduce significantly carbon dioxide emissions in energy production in the developed countries. The major pollution source, fossil fuels, will be used as an energy source for many decades, which provides the demand for carbon capture and storage technologies. Over recent years many new technologies has been developed and one of the most promising is calcium-looping in post-combustion carbon capture process, which use carbonation-calcination cycle to capture carbon dioxide from the flue gas of a combustion process. First pilot plant for calcium-looping process has been built in Oviedo, Spain. In this study, a three-dimensional model has been created for the calciner, which is one of the two fluidized bed reactors needed for the process. The calciner is a regenerator where the captured carbon dioxide is removed from the calcium material and then collected after the reactor. Thesis concentrates in creating the calciner 3D-model frame with CFB3D-program and testing the model with two different example cases. Used input parameters and calciner geometry are Oviedo pilot plant design parameters. The calculation results give information about the process and show that pilot plant calciner should perform as planned. This Master’s Thesis is done in participation to EU FP7 project CaOling.