127 resultados para Gas measurement
Resumo:
Particle Image Velocimetry, PIV, is an optical measuring technique to obtain velocity information of a flow in interest. With PIV it is possible to achieve two or three dimensional velocity vector fields from a measurement area instead of a single point in a flow. Measured flow can be either in liquid or in gas form. PIV is nowadays widely applied to flow field studies. The need for PIV is to obtain validation data for Computational Fluid Dynamics calculation programs that has been used to model blow down experiments in PPOOLEX test facility in the Lappeenranta University of Technology. In this thesis PIV and its theoretical background are presented. All the subsystems that can be considered to be part of a PIV system are presented as well with detail. Emphasis is also put to the mathematics behind the image evaluation. The work also included selection and successful testing of a PIV system, as well as the planning of the installation to the PPOOLEX facility. Already in the preliminary testing PIV was found to be good addition to the measuring equipment for Nuclear Safety Research Unit of LUT. The installation to PPOOLEX facility was successful even though there were many restrictions considering it. All parts of the PIV system worked and they were found out to be appropriate for the planned use. Results and observations presented in this thesis are a good background to further PIV use.
Resumo:
The objective of this study was to find out the factors that affect customer profitability in the not-for-profit case company. The customer profitability was examined in two different segments of the customer base. The effects that price, cost and the amount of services provided have on the profit margin were studied. The distribution of profitability among the customers and the effect of certain characteristics, such as size of the customer measured in services purchased, on the profitability were analyzed. The theoretical framework was built around customer profitability and the use of customer profitability information in a not-for-profit organization. The present use of customer profitability information and the possibilities of using the results of this research in the case company were presented. Quantitative research methods were used in the empirical part of the study. The results indicate that the two customer segments have differences in their buying behaviors which affect the profitability and thus the measures taken to improve the profitability should be considered with the different characteristics of the customers in mind. Finally the limitations of the study were discussed as possible further research topics.
Resumo:
Measurement is a tool for researching. Therefore, it is important that the measuring process is carried out correctly, without distorting the signal or the measured event. Researches of thermoelectric phenomena have been focused more on transverse thermoelectric phenomena during recent decades. Transverse Seebeck effect enables to produce thinner and faster heat flux sensor than before. Studies about transverse Seebeck effect have so far focused on materials, so in this Master’s Thesis instrumentation of transverse Seebeck effect based heat flux sensor is studied, This Master’s Thesis examines an equivalent circuit of transverse Seebeck effect heat flux sensors, their connectivity to electronics and choosing and design a right type amplifier. The research is carried out with a case study which is Gradient Heat Flux Sensors and an electrical motor. In this work, a general equivalent circuit was presented for the transverse Seebeck effect-based heat flux sensor. An amplifier was designed for the sensor of the case study, and the solution was produced for the measurement of the local heat flux of the electric motor to improve the electromagnetic compatibility.
Resumo:
This master’s thesis is devoted to study different heat flux measurement techniques such as differential temperature sensors, semi-infinite surface temperature methods, calorimetric sensors and gradient heat flux sensors. The possibility to use Gradient Heat Flux Sensors (GHFS) to measure heat flux in the combustion chamber of compression ignited reciprocating internal combustion engines was considered in more detail. A. Mityakov conducted an experiment, where Gradient Heat Flux Sensor was placed in four stroke diesel engine Indenor XL4D to measure heat flux in the combustion chamber. The results which were obtained from the experiment were compared with model’s numerical output. This model (a one – dimensional single zone model) was implemented with help of MathCAD and the result of this implementation is graph of heat flux in combustion chamber in relation to the crank angle. The values of heat flux throughout the cycle obtained with aid of heat flux sensor and theoretically were sufficiently similar, but not identical. Such deviation is rather common for this type of experiment.
Resumo:
Forest biomass represents a geographically distributed feedstock, and geographical location affects the greenhouse gas (GHG) performance of a given forest-bioenergy system in several ways. For example, biomass availability, forest operations, transportation possibilities and the distances involved, biomass end-use possibilities, fossil reference systems, and forest carbon balances all depend to some extent on location. The overall objective of this thesis was to assess the GHG emissions derived from supply and energy-utilization chains of forest biomass in Finland, with a specific focus on the effect of location in relation to forest biomass’s availability and the transportation possibilities. Biomass availability and transportation-network assessments were conducted through utilization of geographical information system methods, and the GHG emissions were assessed by means of lifecycle assessment. The thesis is based on four papers in which forest biomass supply on industrial scale was assessed. The feedstocks assessed in this thesis include harvesting residues, smalldiameter energy wood and stumps. The principal implication of the findings in this thesis is that in Finland, the location and availability of biomass in the proximity of a given energyutilization or energy-conversion plant is not a decisive factor in supply-chain GHG emissions or the possible GHG savings to be achieved with forest-biomass energy use. Therefore, for the greatest GHG reductions with limited forest-biomass resources, energy utilization of forest biomass in Finland should be directed to the locations where most GHG savings are achieved through replacement of fossil fuels. Furthermore, one should prioritize the types of forest biomass with the lowest direct supply-chain GHG emissions (e.g., from transport and comminution) and the lowest indirect ones (in particular, soil carbon-stock losses), regardless of location. In this respect, the best combination is to use harvesting residues in combined heat and power production, replacing peat or coal.
Resumo:
The European Organization for Nuclear Research (CERN) operates the largest particle collider in the world. This particle collider is called the Large Hadron Collider (LHC) and it will undergo a maintenance break sometime in 2017 or 2018. During the break, the particle detectors, which operate around the particle collider, will be serviced and upgraded. Following the improvement in performance of the particle collider, the requirements for the detector electronics will be more demanding. In particular, the high amount of radiation during the operation of the particle collider sets requirements for the electronics that are uncommon in commercial electronics. Electronics that are built to function in the challenging environment of the collider have been designed at CERN. In order to meet the future challenges of data transmission, a GigaBit Transceiver data transmission module and an E-Link data bus have been developed. The next generation of readout electronics is designed to benefit from these technologies. However, the current readout electronics chips are not compatible with these technologies. As a result, in addition to new Gas Electron Multiplier (GEM) detectors and other technology, a new compatible chip is developed to function within the GEMs for the Compact Muon Solenoid (CMS) project. In this thesis, the objective was to study a data transmission interface that will be located on the readout chip between the E-Link bus and the control logic of the chip. The function of the module is to handle data transmission between the chip and the E-Link. In the study, a model of the interface was implemented with the Verilog hardware description language. This process was simulated by using chip design software by Cadence. State machines and operating principles with alternative possibilities for implementation are introduced in the E-Link interface design procedure. The functionality of the designed logic is demonstrated in simulation results, in which the implemented model is proven to be suitable for its task. Finally, suggestions that should be considered for improving the design have been presented.
Resumo:
This study concerns performance measurement and management in a collaborative network. Collaboration between companies has been increased in recent years due to the turbulent operating environment. The literature shows that there is a need for more comprehensive research on performance measurement in networks and the use of measurement information in their management. This study examines the development process and uses of a performance measurement system supporting performance management in a collaborative network. There are two main research questions: how to design a performance measurement system for a collaborative network and how to manage performance in a collaborative network. The work can be characterised as a qualitative single case study. The empirical data was collected in a Finnish collaborative network, which consists of a leading company and a reseller network. The work is based on five research articles applying various research methods. The research questions are examined at the network level and at the single network partner level. The study contributes to the earlier literature by producing new and deeper understanding of network-level performance measurement and management. A three-step process model is presented to support the performance measurement system design process. The process model has been tested in another collaborative network. The study also examines the factors affecting the process of designing the measurement system. The results show that a participatory development style, network culture, and outside facilitators have a positive effect on the design process. The study increases understanding of how to manage performance in a collaborative network and what kind of uses of performance information can be identified in a collaborative network. The results show that the performance measurement system is an applicable tool to manage the performance of a network. The results reveal that trust and openness increased during the utilisation of the performance measurement system, and operations became more transparent. The study also presents a management model that evaluates the maturity of performance management in a collaborative network. The model is a practical tool that helps to analyse the current stage of the performance management of a collaborative network and to develop it further.
Resumo:
The iron ore pelletizing process consumes high amounts of energy, including nonrenewable sources, such as natural gas. Due to fossil fuels scarcity and increasing concerns regarding sustainability and global warming, at least partial substitution by renewable energy seems inevitable. Gasification projects are being successfully developed in Northern Europe, and large-scale circulating fluidized bed biomass gasifiers have been commissioned in e.g. Finland. As Brazil has abundant biomass resources, biomass gasification is a promising technology in the near future. Biomasses can be converted into product gas through gasification. This work compares different technologies, e.g. air, oxygen and steam gasification, focusing on the use of the product gas in the indurating machine. The use of biosynthetic natural gas is also evaluated. Main parameters utilized to assess the suitability of product gas were adiabatic flame temperature and volumetric flow rate. It was found that low energy content product gas could be utilized in the traveling grate, but it would require burner’s to be changed. On the other hand, bio-SGN could be utilized without any adaptions. Economical assessment showed that all gasification plants are feasible for sizes greater than 60 MW. Bio-SNG production is still more expensive than natural gas in any case.
Resumo:
Diplomityö tehtiin maakaasun paineenvähennysaseman paineenvähennyslaitteen mitoituksesta. Työn kuluessa suunniteltiin ja toteutettiin mitoitusohjelma maakaasun paineenvähennyslaitteen mitoitukseen. Työssä tutustutaan maakaasun putkivirtaukseen ja paineenvähennysaseman paineenvähennyslaitteeseen. Työssä selvitetään paineenvähennyslaitteen eri osien toiminta ja tarve, sekä kuinka niiden mitoitus ja valinta tapahtuu. Lopputuloksena työstä saatiin suunniteltua ja toteutettua mitoitusohjelma paineenvähennyslaitteelle. Mitoitusohjelman avulla saadaan helposti ja nopeasti selville sopivat osat paineenvähennyslaitteeseen halutulla painetasolla ja ainemäärällä. Ohjelman on tarkoitus helpottaa ja nopeuttaa paineenvähennyslaitteen mitoitusta ja suunnittelua.
Resumo:
In this study, cantilever-enhanced photoacoustic spectroscopy (CEPAS) was applied in different drug detection schemes. The study was divided into two different applications: trace detection of vaporized drugs and drug precursors in the gas-phase, and detection of cocaine abuse in hair. The main focus, however, was the study of hair samples. In the gas-phase, methyl benzoate, a hydrolysis product of cocaine hydrochloride, and benzyl methyl ketone (BMK), a precursor of amphetamine and methamphetamine were investigated. In the solid-phase, hair samples from cocaine overdose patients were measured and compared to a drug-free reference group. As hair consists mostly of long fibrous proteins generally called keratin, proteins from fingernails and saliva were also studied for comparison. Different measurement setups were applied in this study. Gas measurements were carried out using quantum cascade lasers (QLC) as a source in the photoacoustic detection. Also, an external cavity (EC) design was used for a broader tuning range. Detection limits of 3.4 particles per billion (ppb) for methyl benzoate and 26 ppb for BMK in 0.9 s were achieved with the EC-QCL PAS setup. The achieved detection limits are sufficient for realistic drug detection applications. The measurements from drug overdose patients were carried out using Fourier transform infrared (FTIR) PAS. The drug-containing hair samples and drug-free samples were both measured with the FTIR-PAS setup, and the measured spectra were analyzed statistically with principal component analysis (PCA). The two groups were separated by their spectra with PCA and proper spectral pre-processing. To improve the method, ECQCL measurements of the hair samples, and studies using photoacoustic microsampling techniques, were performed. High quality, high-resolution spectra with a broad tuning range were recorded from a single hair fiber. This broad tuning range of an EC-QCL has not previously been used in the photoacoustic spectroscopy of solids. However, no drug detection studies were performed with the EC-QCL solid-phase setup.
Resumo:
More discussion is required on how and which types of biomass should be used to achieve a significant reduction in the carbon load released into the atmosphere in the short term. The energy sector is one of the largest greenhouse gas (GHG) emitters and thus its role in climate change mitigation is important. Replacing fossil fuels with biomass has been a simple way to reduce carbon emissions because the carbon bonded to biomass is considered as carbon neutral. With this in mind, this thesis has the following objectives: (1) to study the significance of the different GHG emission sources related to energy production from peat and biomass, (2) to explore opportunities to develop more climate friendly biomass energy options and (3) to discuss the importance of biogenic emissions of biomass systems. The discussion on biogenic carbon and other GHG emissions comprises four case studies of which two consider peat utilization, one forest biomass and one cultivated biomasses. Various different biomass types (peat, pine logs and forest residues, palm oil, rapeseed oil and jatropha oil) are used as examples to demonstrate the importance of biogenic carbon to life cycle GHG emissions. The biogenic carbon emissions of biomass are defined as the difference in the carbon stock between the utilization and the non-utilization scenarios of biomass. Forestry-drained peatlands were studied by using the high emission values of the peatland types in question to discuss the emission reduction potential of the peatlands. The results are presented in terms of global warming potential (GWP) values. Based on the results, the climate impact of the peat production can be reduced by selecting high-emission-level peatlands for peat production. The comparison of the two different types of forest biomass in integrated ethanol production in pulp mill shows that the type of forest biomass impacts the biogenic carbon emissions of biofuel production. The assessment of cultivated biomasses demonstrates that several selections made in the production chain significantly affect the GHG emissions of biofuels. The emissions caused by biofuel can exceed the emissions from fossil-based fuels in the short term if biomass is in part consumed in the process itself and does not end up in the final product. Including biogenic carbon and other land use carbon emissions into the carbon footprint calculations of biofuel reveals the importance of the time frame and of the efficiency of biomass carbon content utilization. As regards the climate impact of biomass energy use, the net impact on carbon stocks (in organic matter of soils and biomass), compared to the impact of the replaced energy source, is the key issue. Promoting renewable biomass regardless of biogenic GHG emissions can increase GHG emissions in the short term and also possibly in the long term.
Resumo:
Global warming is assertively the greatest environmental challenge for humans of 21st century. It is primarily caused by the anthropogenic greenhouse gas (GHG) that trap heat in the atmosphere. Because of which, the GHG emission mitigation, globally, is a critical issue in the political agenda of all high-profile nations. India, like other developing countries, is facing this threat of climate change while dealing with the challenge of sustaining its rapid economic growth. India’s economy is closely connected to its natural resource base and climate sensitive sectors like water, agriculture and forestry. Due to Climate change the quality and distribution of India’s natural resources may transform and lead to adverse effects on livelihood of its people. Therefore, India is expected to face a major threat due to the projected climate change. This study proposes possible solutions for GHG emission mitigation that are specific to the power sector of India. The methods discussed here will take Indian power sector from present coal dominant ideology to a system, centered with renewable energy sources. The study further proposes a future scenario for 2050, based on the present Indian government policies and global energy technologies advancements.
Resumo:
Gas shielding plays an important role in laser welding phenomena. This is because it does not only provide shielding against oxidization but it has an effect in beam absorption and thus welds penetration. The goal of this thesis is to study and compare the effects of different shielding gas feeding methods in laser welding of steel. Research method is a literature survey. It is found that the inclination angle and the arrangement of the gas feeding nozzles affect the phenomena significantly. It is suggested that by designing shielding gas feeding case specifically better welding results can be obtained.
Resumo:
Hydrogen stratification and atmosphere mixing is a very important phenomenon in nuclear reactor containments when severe accidents are studied and simulated. Hydrogen generation, distribution and accumulation in certain parts of containment may pose a great risk to pressure increase induced by hydrogen combustion, and thus, challenge the integrity of NPP containment. The accurate prediction of hydrogen distribution is important with respect to the safety design of a NPP. Modelling methods typically used for containment analyses include both lumped parameter and field codes. The lumped parameter method is universally used in the containment codes, because its versatility, flexibility and simplicity. The lumped parameter method allows fast, full-scale simulations, where different containment geometries with relevant engineering safety features can be modelled. Lumped parameter gas stratification and mixing modelling methods are presented and discussed in this master’s thesis. Experimental research is widely used in containment analyses. The HM-2 experiment related to hydrogen stratification and mixing conducted at the THAI facility in Germany is calculated with the APROS lump parameter containment package and the APROS 6-equation thermal hydraulic model. The main purpose was to study, whether the convection term included in the momentum conservation equation of the 6-equation modelling gives some remarkable advantages compared to the simplified lumped parameter approach. Finally, a simple containment test case (high steam release to a narrow steam generator room inside a large dry containment) was calculated with both APROS models. In this case, the aim was to determine the extreme containment conditions, where the effect of convection term was supposed to be possibly high. Calculation results showed that both the APROS containment and the 6-equation model could model the hydrogen stratification in the THAI test well, if the vertical nodalisation was dense enough. However, in more complicated cases, the numerical diffusion may distort the results. Calculation of light gas stratification could be probably improved by applying the second order discretisation scheme for the modelling of gas flows. If the gas flows are relatively high, the convection term of the momentum equation is necessary to model the pressure differences between the adjacent nodes reasonably.