95 resultados para Problems solving


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In today’s world because of the rapid advancement in the field of technology and business, the requirements are not clear, and they are changing continuously in the development process. Due to those changes in the requirements the software development becomes very difficult. Use of traditional software development methods such as waterfall method is not a good option, as the traditional software development methods are not flexible to requirements and the software can be late and over budget. For developing high quality software that satisfies the customer, the organizations can use software development methods, such as agile methods which are flexible to change requirements at any stage in the development process. The agile methods are iterative and incremental methods that can accelerate the delivery of the initial business values through the continuous planning and feedback, and there is close communication between the customer and developers. The main purpose of the current thesis is to find out the problems in traditional software development and to show how agile methods reduced those problems in software development. The study also focuses the different success factors of agile methods, the success rate of agile projects and comparison between traditional and agile software development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identification of low-dimensional structures and main sources of variation from multivariate data are fundamental tasks in data analysis. Many methods aimed at these tasks involve solution of an optimization problem. Thus, the objective of this thesis is to develop computationally efficient and theoretically justified methods for solving such problems. Most of the thesis is based on a statistical model, where ridges of the density estimated from the data are considered as relevant features. Finding ridges, that are generalized maxima, necessitates development of advanced optimization methods. An efficient and convergent trust region Newton method for projecting a point onto a ridge of the underlying density is developed for this purpose. The method is utilized in a differential equation-based approach for tracing ridges and computing projection coordinates along them. The density estimation is done nonparametrically by using Gaussian kernels. This allows application of ridge-based methods with only mild assumptions on the underlying structure of the data. The statistical model and the ridge finding methods are adapted to two different applications. The first one is extraction of curvilinear structures from noisy data mixed with background clutter. The second one is a novel nonlinear generalization of principal component analysis (PCA) and its extension to time series data. The methods have a wide range of potential applications, where most of the earlier approaches are inadequate. Examples include identification of faults from seismic data and identification of filaments from cosmological data. Applicability of the nonlinear PCA to climate analysis and reconstruction of periodic patterns from noisy time series data are also demonstrated. Other contributions of the thesis include development of an efficient semidefinite optimization method for embedding graphs into the Euclidean space. The method produces structure-preserving embeddings that maximize interpoint distances. It is primarily developed for dimensionality reduction, but has also potential applications in graph theory and various areas of physics, chemistry and engineering. Asymptotic behaviour of ridges and maxima of Gaussian kernel densities is also investigated when the kernel bandwidth approaches infinity. The results are applied to the nonlinear PCA and to finding significant maxima of such densities, which is a typical problem in visual object tracking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Almost every problem of design, planning and management in the technical and organizational systems has several conflicting goals or interests. Nowadays, multicriteria decision models represent a rapidly developing area of operation research. While solving practical optimization problems, it is necessary to take into account various kinds of uncertainty due to lack of data, inadequacy of mathematical models to real-time processes, calculation errors, etc. In practice, this uncertainty usually leads to undesirable outcomes where the solutions are very sensitive to any changes in the input parameters. An example is the investment managing. Stability analysis of multicriteria discrete optimization problems investigates how the found solutions behave in response to changes in the initial data (input parameters). This thesis is devoted to the stability analysis in the problem of selecting investment project portfolios, which are optimized by considering different types of risk and efficiency of the investment projects. The stability analysis is carried out in two approaches: qualitative and quantitative. The qualitative approach describes the behavior of solutions in conditions with small perturbations in the initial data. The stability of solutions is defined in terms of existence a neighborhood in the initial data space. Any perturbed problem from this neighborhood has stability with respect to the set of efficient solutions of the initial problem. The other approach in the stability analysis studies quantitative measures such as stability radius. This approach gives information about the limits of perturbations in the input parameters, which do not lead to changes in the set of efficient solutions. In present thesis several results were obtained including attainable bounds for the stability radii of Pareto optimal and lexicographically optimal portfolios of the investment problem with Savage's, Wald's criteria and criteria of extreme optimism. In addition, special classes of the problem when the stability radii are expressed by the formulae were indicated. Investigations were completed using different combinations of Chebyshev's, Manhattan and Hölder's metrics, which allowed monitoring input parameters perturbations differently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis considers optimization problems arising in printed circuit board assembly. Especially, the case in which the electronic components of a single circuit board are placed using a single placement machine is studied. Although there is a large number of different placement machines, the use of collect-and-place -type gantry machines is discussed because of their flexibility and increasing popularity in the industry. Instead of solving the entire control optimization problem of a collect-andplace machine with a single application, the problem is divided into multiple subproblems because of its hard combinatorial nature. This dividing technique is called hierarchical decomposition. All the subproblems of the one PCB - one machine -context are described, classified and reviewed. The derived subproblems are then either solved with exact methods or new heuristic algorithms are developed and applied. The exact methods include, for example, a greedy algorithm and a solution based on dynamic programming. Some of the proposed heuristics contain constructive parts while others utilize local search or are based on frequency calculations. For the heuristics, it is made sure with comprehensive experimental tests that they are applicable and feasible. A number of quality functions will be proposed for evaluation and applied to the subproblems. In the experimental tests, artificially generated data from Markov-models and data from real-world PCB production are used. The thesis consists of an introduction and of five publications where the developed and used solution methods are described in their full detail. For all the problems stated in this thesis, the methods proposed are efficient enough to be used in the PCB assembly production in practice and are readily applicable in the PCB manufacturing industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study attempted to provide a project based on the already tested and successful results of foreign business which can help to contain the final price of innovation on desired levels. The research will attempt to dig out most of available information related to aforementioned definitions and thus completing theoretical background. Next author will explain used methodology and the process of evidence collection. After that the study will show the analysis of collected data in order to obtain results which are going to be compared with stated objectives in the final part. The conclusion of the research and proposed possibilities for additional work will be given in the last part. For this study author has chosen the qualitative model because it performs very well for analysis of small scale of data. The case study method was used because it gave author an opportunity to make an in-depth analysis of the collected information about particular organization so it became possible to analyze system's details in comparison. The results have been early considered valid and applicable to other studies. As the result thesis has proposed undertakings which reflect researches aimed on solving problems with provision of services and development of communications. In addition thesis has proposed formulation of database of postal service for Russian Post when (by request) customer possess an account where he or she can access postal services via PC or info table in postal office and order delivery of postal products which will be given private identification code. Project's payoff period has been calculated as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally metacognition has been theorised, methodologically studied and empirically tested from the standpoint mainly of individuals and their learning contexts. In this dissertation the emergence of metacognition is analysed more broadly. The aim of the dissertation was to explore socially shared metacognitive regulation (SSMR) as part of collaborative learning processes taking place in student dyads and small learning groups. The specific aims were to extend the concept of individual metacognition to SSMR, to develop methods to capture and analyse SSMR and to validate the usefulness of the concept of SSMR in two different learning contexts; in face-to-face student dyads solving mathematical word problems and also in small groups taking part in inquiry-based science learning in an asynchronous computer-supported collaborative learning (CSCL) environment. This dissertation is comprised of four studies. In Study I, the main aim was to explore if and how metacognition emerges during problem solving in student dyads and then to develop a method for analysing the social level of awareness, monitoring, and regulatory processes emerging during the problem solving. Two dyads comprised of 10-year-old students who were high-achieving especially in mathematical word problem solving and reading comprehension were involved in the study. An in-depth case analysis was conducted. Data consisted of over 16 (30–45 minutes) videotaped and transcribed face-to-face sessions. The dyads solved altogether 151 mathematical word problems of different difficulty levels in a game-format learning environment. The interaction flowchart was used in the analysis to uncover socially shared metacognition. Interviews (also stimulated recall interviews) were conducted in order to obtain further information about socially shared metacognition. The findings showed the emergence of metacognition in a collaborative learning context in a way that cannot solely be explained by individual conception. The concept of socially-shared metacognition (SSMR) was proposed. The results highlighted the emergence of socially shared metacognition specifically in problems where dyads encountered challenges. Small verbal and nonverbal signals between students also triggered the emergence of socially shared metacognition. Additionally, one dyad implemented a system whereby they shared metacognitive regulation based on their strengths in learning. Overall, the findings suggested that in order to discover patterns of socially shared metacognition, it is important to investigate metacognition over time. However, it was concluded that more research on socially shared metacognition, from larger data sets, is needed. These findings formed the basis of the second study. In Study II, the specific aim was to investigate whether socially shared metacognition can be reliably identified from a large dataset of collaborative face-to-face mathematical word problem solving sessions by student dyads. We specifically examined different difficulty levels of tasks as well as the function and focus of socially shared metacognition. Furthermore, the presence of observable metacognitive experiences at the beginning of socially shared metacognition was explored. Four dyads participated in the study. Each dyad was comprised of high-achieving 10-year-old students, ranked in the top 11% of their fourth grade peers (n=393). Dyads were from the same data set as in Study I. The dyads worked face-to-face in a computer-supported, game-format learning environment. Problem-solving processes for 251 tasks at three difficulty levels taking place during 56 (30–45 minutes) lessons were video-taped and analysed. Baseline data for this study were 14 675 turns of transcribed verbal and nonverbal behaviours observed in four study dyads. The micro-level analysis illustrated how participants moved between different channels of communication (individual and interpersonal). The unit of analysis was a set of turns, referred to as an ‘episode’. The results indicated that socially shared metacognition and its function and focus, as well as the appearance of metacognitive experiences can be defined in a reliable way from a larger data set by independent coders. A comparison of the different difficulty levels of the problems suggested that in order to trigger socially shared metacognition in small groups, the problems should be more difficult, as opposed to moderately difficult or easy. Although socially shared metacognition was found in collaborative face-to-face problem solving among high-achieving student dyads, more research is needed in different contexts. This consideration created the basis of the research on socially shared metacognition in Studies III and IV. In Study III, the aim was to expand the research on SSMR from face-to-face mathematical problem solving in student dyads to inquiry-based science learning among small groups in an asynchronous computer-supported collaborative learning (CSCL) environment. The specific aims were to investigate SSMR’s evolvement and functions in a CSCL environment and to explore how SSMR emerges at different phases of the inquiry process. Finally, individual student participation in SSMR during the process was studied. An in-depth explanatory case study of one small group of four girls aged 12 years was carried out. The girls attended a class that has an entrance examination and conducts a language-enriched curriculum. The small group solved complex science problems in an asynchronous CSCL environment, participating in research-like processes of inquiry during 22 lessons (á 45–minute). Students’ network discussion were recorded in written notes (N=640) which were used as study data. A set of notes, referred to here as a ‘thread’, was used as the unit of analysis. The inter-coder agreement was regarded as substantial. The results indicated that SSMR emerges in a small group’s asynchronous CSCL inquiry process in the science domain. Hence, the results of Study III were in line with the previous Study I and Study II and revealed that metacognition cannot be reduced to the individual level alone. The findings also confirm that SSMR should be examined as a process, since SSMR can evolve during different phases and that different SSMR threads overlapped and intertwined. Although the classification of SSMR’s functions was applicable in the context of CSCL in a small group, the dominant function was different in the asynchronous CSCL inquiry in the small group in a science activity than in mathematical word problem solving among student dyads (Study II). Further, the use of different analytical methods provided complementary findings about students’ participation in SSMR. The findings suggest that it is not enough to code just a single written note or simply to examine who has the largest number of notes in the SSMR thread but also to examine the connections between the notes. As the findings of the present study are based on an in-depth analysis of a single small group, further cases were examined in Study IV, as well as looking at the SSMR’s focus, which was also studied in a face-to-face context. In Study IV, the general aim was to investigate the emergence of SSMR with a larger data set from an asynchronous CSCL inquiry process in small student groups carrying out science activities. The specific aims were to study the emergence of SSMR in the different phases of the process, students’ participation in SSMR, and the relation of SSMR’s focus to the quality of outcomes, which was not explored in previous studies. The participants were 12-year-old students from the same class as in Study III. Five small groups consisting of four students and one of five students (N=25) were involved in the study. The small groups solved ill-defined science problems in an asynchronous CSCL environment, participating in research-like processes of inquiry over a total period of 22 hours. Written notes (N=4088) detailed the network discussions of the small groups and these constituted the study data. With these notes, SSMR threads were explored. As in Study III, the thread was used as the unit of analysis. In total, 332 notes were classified as forming 41 SSMR threads. Inter-coder agreement was assessed by three coders in the different phases of the analysis and found to be reliable. Multiple methods of analysis were used. Results showed that SSMR emerged in all the asynchronous CSCL inquiry processes in the small groups. However, the findings did not reveal any significantly changing trend in the emergence of SSMR during the process. As a main trend, the number of notes included in SSMR threads differed significantly in different phases of the process and small groups differed from each other. Although student participation was seen as highly dispersed between the students, there were differences between students and small groups. Furthermore, the findings indicated that the amount of SSMR during the process or participation structure did not explain the differences in the quality of outcomes for the groups. Rather, when SSMRs were focused on understanding and procedural matters, it was associated with achieving high quality learning outcomes. In turn, when SSMRs were focused on incidental and procedural matters, it was associated with low level learning outcomes. Hence, the findings imply that the focus of any emerging SSMR is crucial to the quality of the learning outcomes. Moreover, the findings encourage the use of multiple research methods for studying SSMR. In total, the four studies convincingly indicate that a phenomenon of socially shared metacognitive regulation also exists. This means that it was possible to define the concept of SSMR theoretically, to investigate it methodologically and to validate it empirically in two different learning contexts across dyads and small groups. In-depth micro-level case analysis in Studies I and III showed the possibility to capture and analyse in detail SSMR during the collaborative process, while in Studies II and IV, the analysis validated the emergence of SSMR in larger data sets. Hence, validation was tested both between two environments and within the same environments with further cases. As a part of this dissertation, SSMR’s detailed functions and foci were revealed. Moreover, the findings showed the important role of observable metacognitive experiences as the starting point of SSMRs. It was apparent that problems dealt with by the groups should be rather difficult if SSMR is to be made clearly visible. Further, individual students’ participation was found to differ between students and groups. The multiple research methods employed revealed supplementary findings regarding SSMR. Finally, when SSMR was focused on understanding and procedural matters, this was seen to lead to higher quality learning outcomes. Socially shared metacognition regulation should therefore be taken into consideration in students’ collaborative learning at school similarly to how an individual’s metacognition is taken into account in individual learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study is to increase understanding of the nature and role of trust in temporary virtual problem-solving teams engaged in real-life co-creation activities, while much of previous research has been conducted in student settings. The different forms and bases of trust, possible trust barriers and trust building actions, and perceived role of trust in knowledge sharing and collaboration are analyzed. The study is conducted as a qualitative case study in case company. Data includes interviews from 24 people: 13 from 3 different project teams that were going on during the study, 8 from already finalized project teams, and 3 founders of case company. Additional data consists of communication archives from three current teams. The results indicate that there were both knowledge-based and swift trust present, former being based on work-related personal experiences about leaders or other team members, and latter especially on references, disposition to trust and institution-based factors such as norms and rules, as well as leader and expert action. The findings suggest that possible barriers of trust might be related to lack of adaptation to virtual work, unclear roles and safety issues, and nature of virtual communication. Actions that could be applied to enhance trust are for example active behavior in discussions, work-related introductions communicating competence, managerial actions and face-to-face interaction. Finally, results also suggest that trust has a focal role as an enabler of action and knowledge sharing, and coordinator of effective collaboration and performance in temporary virtual problem-solving teams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Työn tavoitteena on selvittää, minkälaisia mahdollisuuksia digitaalinen tarinankerronta antaa peruskouluissa. Työssä käsitellään digitaalinen tarinankerronta ja se, miten sitä hyödynnetään opetuksessa. Työn taustana on opetushallituksen laatima opetussuunnitelma 2016. Opetussuunnitelmassa uutena on ohjelmointi, jota käsitellään työssä vähän tarkemmin. Tulevaisuudessa teknologia, kuten koodaus ja robotiikka sekä lisätty todellisuus voivat tukea luovuutta, innovatiivisuutta ja ongelmanratkaisukykyä. Työ on kirjallisuuskatsaus, jossa aihetta analysoidaan lähdekirjallisuuden avulla. Digitaalisella tarinankerronnalla luokkahuoneessa on rajattomat mahdollisuudet. Digitaalinen tarinankerronta tukee uuden opetussuunnitelman tavoitteita. Digitaalisen tarinankerronnan avulla voidaan osallistaa lapset oppimisprosessiin, heidän omia vahvuuksia saadaan esille sekä he pääsevät itse oivaltamaan ja ratkomaan ongelmia. Ohjelmointi, robotiikka ja lisätty todellisuus antavat uusia työkaluja opetukseen. Ohjelmointi on älyllisesti motivoiva ajattelutapa. Teknologian käyttö opetuksessa lisää opiskelumotivaatiota ja yhdessä tekemisen iloa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study is to understand why virtual knowledge workers conduct autonomous tasks and interdependent problem solving tasks on virtual platforms. The study is qualitative case study including three case organizations that tap the knowledge of expert networks, and utilize virtual platforms in the work processes. Research data includes 15 interviews, that is, five experts from each case company. According to the findings there are some specific characteristics in motivation to work on tasks on online platforms. Autonomy, self-improvement, meaningful tasks, knowledge sharing, time management, variety of contacts, and variety of tasks, and projects motivate virtual knowledge workers. Factors that may enhance individuals’ engagement to work on tasks are trust, security of continuous task flow and income, feedback, meaningful tasks and tasks that contribute to self-improvement, flexibility and effectiveness in time management, and virtual tools that support social interaction. The results also indicate that there are some differences in individuals’ motivation based on the tasks’ nature. That is, knowledge sharing and variety of contacts motivated experts who worked on interdependent problem solving tasks. Then again, autonomy and variety of tasks motivated experts who worked on autonomous tasks.