73 resultados para heating plants
Resumo:
The objective of this master’s thesis was to design and simulate a wind powered hydraulic heating system that can operate independently in remote places where the use of electricity is not possible. Components for the system were to be selected in such a way that the conditions for manufacture, use and economic viability are the as good as possible. Savonius rotor was chosen for wind turbine, due to its low cut in speed and robust design. Savonius rotor produces kinetic energy in wide wind speed range and it can withstand high wind gusts. Radial piston pump was chosen for the flow source of the hydraulic heater. Pump type was selected due to its characteristics in low rotation speeds and high efficiency. Volume flow from the pump is passed through the throttle orifice. Pressure drop over the orifice causes the hydraulic oil to heat up and, thus, creating thermal energy. Thermal energy in the oil is led to radiator where it conducts heat to the environment. The hydraulic heating system was simulated. For this purpose a mathematical models of chosen components were created. In simulation wind data gathered by Finnish meteorological institute for 167 hours was used as input. The highest produced power was achieved by changing the orifice diameter so that the rotor tip speed ratio follows the power curve. This is not possible to achieve without using electricity. Thus, for the orifice diameter only one, the optimal value was defined. Results from the simulation were compared with investment calculations. Different parameters effecting the investment profitability were altered in sensitivity analyses in order to define the points of investment profitability. Investment was found to be profitable only with high average wind speeds.
Resumo:
Työssä tarkasteltiin älykkäiden sähköverkkojen näkökulmasta, millaisia toiminnallisuuksia kiinteistöautomaatiojärjestelmiltä odotetaan ja miten markkinoilla olevat järjestelmät vastaavat näihin odotuksiin. Lisäksi arvioitiin, kuinka taloudellisesti kannattavia valittuihin automaatiojärjestelmiin kuuluvat energian käytön hallintaan liittyvät toiminnallisuudet ovat sähkönkäyttäjien näkökulmasta. Lopuksi tehtiin lyhyt katsaus kiinteistöautomaatiojärjestelmien tulevaisuuden näkymiin. Kiinteistöautomaatiolla voidaan vaikuttaa energian käytön tehokkuuteen ohjaamalla esimerkiksi valaistusta, ilmanvaihtoa, ilmastointia, lämmitystä ja sähkölaitteita. Eräs vaihtoehto on toteuttaa ohjauksen avulla markkinapohjaista kysyntäjoustoa, jossa kiinteistön sähköjärjestelmän toimintaa säädetään sähkön hinnan perusteella. Kiinteistössä tulee myös voida tehdä laitekohtaisia energiankulutuksen mittauksia, jotka antavat tietoa sähkönkäyttäjille eri laitteiden sähkönkulutuksesta. Kiinteistöautomaation ja sähkön pientuotannon yleistymisen myötä on myös etähallittavien virtuaalivoimaloiden toteuttaminen tulossa mahdolliseksi. Lisäksi laskettiin sähkönkäyttäjän kannalta lämmityksen, valaistuksen ja ilmanvaihdon ohjauksen kannattavuutta ja selvitettiin, että tutkituissa esimerkkijärjestelmissä suurin säästöpotentiaali on lämmityksen ohjauksessa.
Resumo:
The aim of this project was to develop general framework for systematic assessment of energy efficiency of heating on regional level in Russia. The framework created during this project includes two main instruments, namely: general regional heating energy efficiency assessment model (REEMod) and general regional heating energy efficiency assessment criteria for housing areas (REECrit). Framework pays extreme attention to realization of energy saving, overall cost efficiency and comfortable indoor climate. Life-cycle ideology was applied during creation of the framework. Application of the framework can provide decision-making process with systematically collected and processed information on current state of areas energy efficiency. Such information will help decision makers to evaluate current situation of the whole energy chain, to compare different development scenarios and to identify the most efficient improvement methods, thus supporting realization of regions efficient energy management. Simultaneous pursuit of energy savings, cost efficiency and indoor air quality can contribute to development of sustainable community. Presented instruments should be continuously developed further as an iterative process based on knew experience, development of technology and overall understanding of energy efficiency issues.
Resumo:
Työn tavoitteena on kehittää ABB:lle palvelutuote, jota voidaan tarjota voimalaitosasiakkaille. Uuden palvelutuotteen tulee vastata ABB:n uuden strategian linjauksiin. Palvelulla tarjotaan asiakkaille 1.1.2015 voimaan tulleen energiatehokkuuslain määrittelemien pakollisten toimenpiteiden suoritusta. Työssä kerätään, käsitellään ja analysoidaan tietoa voimalaitosasiakkaille suunnatun palvelun tuotteistamisprosessin päätöksenteon tueksi. Palvelutuotteen kehittämistä varten tutkitaan ABB:n nykyisiä palvelutuotteita, osaamista ja referenssi projekteja, energiatehokkuuslakia, voimalaitosten energiatehokkuus-potentiaalia ja erilaisia energiakatselmusmalleja. Päätöksenteon tueksi tehdään referenssiprojektina energia-analyysi voimalaitokselle, jossa voimalaitoksesta tehdään ipsePRO simulointiohjelmalla mallinnus. Mallinnuksen ja koeajojen avulla tutkitaan voimalaitoksen minimikuorman optimointia. Markkinatutkimuksessa selvitetään lainsäädännön vaikutusta, nykyistä markkinatilannetta, potentiaalisia asiakkaita, kilpailijoita ja ABB:n mahdollisuuksia toimia alalla SWOT–analyysin avulla. Tutkimuksen tulosten perusteella tehdään päätös tuotteistaa voimalaitoksille palvelutuote, joka sisältää kaikki toimet energiatehokkuuslain asettamien vaatimusten täyttämiseen yrityksen energiakatselmuksen vastuuhenkilön, energiakatselmuksen ja kohdekatselmuksien teon osalta. Lisäksi työn aikana Energiavirasto myönsi ABB:lle pätevyyden toimia yrityksen energiakatselmuksen vastuuhenkilönä, mikä on edellytyksenä palvelun tarjoamiselle.
Resumo:
Repowering existing power plants by replacing coal with biomass might offer an interesting option to ease the transition from fossil fuels to renewable energy sources and promote a fur-ther expansion of bioenergy in Europe, on account of the potential to decrease greenhouse gas emissions, as well as other pollutants (SOx, NOx, etcetera). In addition, a great part of the appeal of repowering projects comes from the opportunity to reuse the vast existing invest-ment and infrastructure associated with coal-based power generation. Even so, only a limited number of experiences with repowering are found. Therefore, efforts are required to produce technical and scientific evidence to determine whether said technology might be considered feasible for its adoption within European conditions. A detailed evaluation of the technical and economic aspects of this technology constitutes a powerful tool for decision makers to define the energy future for Europe. To better illustrate this concept, a case study is analyzed. A Slovakian pulverized coal plant was used as the basis for determining the effects on perfor-mance, operation, maintenance and cost when fuel is shifted to biomass. It was found that biomass fuel properties play a crucial role in plant repowering. Furthermore, results demon-strate that this technology offers renewable energy with low pollutant emissions at the cost of reduced capacity, relatively high levelized cost of electricity and sometimes, a maintenance-intensive operation. Lastly, regardless of the fact that existing equipment can be reutilized for the most part, extensive additions/modifications may be required to ensure a safe operation and an acceptable performance.
Resumo:
A support ring of AISI 304L stainless steel that holds vertical, parallel wires arranged in a circle forming a cylinder is studied. The wires are attached to the ring with heat-induced shrinkage. When the ring is heated with a torch the heat affected zone tries to expand while the adjacent cool structure obstructs the expansion causing upsetting. During cooling, the ring shrinks smaller than its original size clamping the wires. The most important requirement for the ring is that it should be as round as possible and the deformations should occur as overall shrinkage in the ring diameter. A three-dimensional nonlinear transient sequential thermo-structural Abaqus model is used together with a Fortran code that enters the heat flux to each affected element. The local and overall deformations in one ring inflicted by the heating are studied with a small amount of inspection on residual stresses. A variety of different cases are chosen to be studied with the model constructed to provide directional knowledge; torch flux with the means of speed, location of the wires, heating location and structural factors. The decrease of heating speed increases heat flux that rises the temperature increasing shrinkage. In a single progressive heating uneven distribution of shrinkage appears to the start/end region that can be partially fixed with using speeded heating’s to strengthen the heating of that region. Location of the wires affect greatly to the caused shrinkage unlike heating location. The ring structure affects also greatly to the shrinkage; smaller diameter, bigger ring height, thinner thickness and greater number of wires increase shrinkage.
Resumo:
It is common knowledge of the world’s dependency on fossil fuel for energy, its unsustainability on the long run and the changing trend towards renewable energy as an alternative energy source. This aims to cut down greenhouse gas emission and its impact on the rate of ecological and climatic change. Quite remarkably, wind energy has been one of many focus areas of renewable energy sources and has attracted lots of investment and technological advancement. The objective of this research is to explore wind energy and its application in household heating. This research aims at applying experimental approach in real time to study and verify a virtually simulated wind powered hydraulic house heating system. The hardware components comprise of an integrated hydraulic pump, flow control valve, hydraulic fluid and other hydraulic components. The system design and control applies hardware in-the-loop (HIL) simulation setup. Output signal from the semi-empirical turbine modelling controls the integrated motor to generate flow. Throttling the volume flow creates pressure drop across the valve and subsequently thermal power in the system to be outputted using a heat exchanger. Maximum thermal power is achieved by regulating valve orifice to achieve optimum system parameter. Savonius rotor is preferred for its low inertia, high starting torque and ease of design and maintenance characteristics, but lags in power efficiency. A prototype turbine design is used; with power output in range of practical Savonius turbine. The physical mechanism of the prototype turbine’s augmentation design is not known and will not be a focus in this study.
Resumo:
Torrefaction is the partial pyrolysis of wood characterised by thermal degradation of predominantly hemicellulose under inert atmosphere. Torrefaction can be likened to coffee roasting but with wood in place of beans. This relatively new process concept makes wood more like coal. Torrefaction has attracted interest because it potentially enables higher rates of co-firing in existing pulverised-coal power plants and hence greater net CO2 emission reductions. Academic and entrepreneurial interest in torrefaction has sky rocketed in the last decade. Research output has focused on the many aspects of torrefaction – from detailed chemical changes in feedstock to globally-optimised production and supply scenarios with which to sustain EU emission-cutting directives. However, despite its seemingly simple concept, torrefaction has retained a somewhat mysterious standing. Why hasn’t torrefied pellet production become fully commercialised? The question is one of feasibility. This thesis addresses this question. Herein, the feasibility of torrefaction in co-firing applications is approached from three directions. Firstly, the natural limitations imposed by the structure of wood are assessed. Secondly, the environmental impact of production and use of torrefied fuel is evaluated and thirdly, economic feasibility is assessed based on the state of the art of pellet making. The conclusions reached in these domains are as follows. Modification of wood’s chemical structure is limited by its naturally existing constituents. Consequently, key properties of wood with regards to its potential as a co-firing fuel have a finite range. The most ideal benefits gained from wood torrefaction cannot all be realised simultaneously in a single process or product. Although torrefaction at elevated pressure may enhance some properties of torrefied wood, high-energy torrefaction yields are achieved at the expense of other key properties such as heating value, grindability, equilibrium moisture content and the ability to pelletise torrefied wood. Moreover, pelletisation of even moderately torrefied fuels is challenging and achieving a standard level of pellet durability, as required by international standards, is not trivial. Despite a reduced moisture content, brief exposure of torrefied pellets to water from rainfall or emersion results in a high level of moisture retention. Based on the above findings, torrefied pellets are an optimised product. Assessment of energy and CO2-equivalent emission balance indicates that there is no environmental barrier to production and use of torrefied pellets in co-firing. A long product transport distance, however, is necessary in order for emission benefits to exceed those of conventional pellets. Substantial CO2 emission reductions appear possible with this fuel if laboratory milling results carry over to industrial scales for direct co-firing. From demonstrated state-of-the-art pellet properties, however, the economic feasibility of torrefied pellet production falls short of conventional pellets primarily due to the larger capital investment required for production. If the capital investment for torrefied pellet production can be reduced significantly or if the pellet-making issues can be resolved, the two production processes could be economically comparable. In this scenario, however, transatlantic shipping distances and a dry fuel are likely necessary for production to be viable. Based on demonstrated pellet properties to date, environmental aspects and production economics, it is concluded that torrefied pellets do not warrant investment at this time. However, from the presented results, the course of future research in this field is clear.
Resumo:
This thesis reviews the role of nuclear and conventional power plants in the future energy system. The review is done by utilizing freely accesible publications in addition to generating load duration and ramping curves for Nordic energy system. As the aim of the future energy system is to reduce GHG-emissions and avoid further global warming, the need for flexible power generation increases with the increased share of intermittent renewables. The goal of this thesis is to offer extensive understanding of possibilities and restrictions that nuclear power and conventional power plants have regarding flexible and sustainable generation. As a conclusion, nuclear power is the only technology that is able to provide large scale GHG-free power output variations with good ramping values. Most of the currently operating plants are able to take part in load following as the requirement to do so is already required to be included in the plant design. Load duration and ramping curves produced prove that nuclear power is able to cover most of the annual generation variation and ramping needs in the Nordic energy system. From the conventional power generation methods, only biomass combustion can be considered GHG-free because biomass is considered carbon neutral. CFB combusted biomass has good load follow capabilities in good ramping and turndown ratios. All the other conventional power generation technologies generate GHG-emissions and therefore the use of these technologies should be reduced.
Resumo:
Torrefaction is moderate thermal treatment (~200-300 °C) of biomass in an inert atmosphere. The torrefied fuel offers advantages to traditional biomass, such as higher heating value, reduced hydrophilic nature, increased its resistance to biological decay, and improved grindability. These factors could, for instance, lead to better handling and storage of biomass and increased use of biomass in pulverized combustors. In this work, we look at several aspects of changes in the biomass during torrefaction. We investigate the fate of carboxylic groups during torrefaction and its dependency to equilibrium moisture content. The changes in the wood components including carbohydrates, lignin, extractable materials and ashforming matters are also studied. And at last, the effect of K on torrefaction is investigated and then modeled. In biomass, carboxylic sites are partially responsible for its hydrophilic characteristic. These sites are degraded to varying extents during torrefaction. In this work, methylene blue sorption and potentiometric titration were applied to measure the concentration of carboxylic groups in torrefied spruce wood. The results from both methods were applicable and the values agreed well. A decrease in the equilibrium moisture content at different humidity was also measured for the torrefied wood samples, which is in good agreement with the decrease in carboxylic group contents. Thus, both methods offer a means of directly measuring the decomposition of carboxylic groups in biomass during torrefaction as a valuable parameter in evaluating the extent of torrefaction. This provides new information to the chemical changes occurring during torrefaction. The effect of torrefaction temperature on the chemistry of birch wood was investigated. The samples were from a pilot plant at Energy research Center of the Netherlands (ECN). And in that way they were representative of industrially produced samples. Sugar analysis was applied to analyze the hemicellulose and cellulose content during torrefaction. The results show a significant degradation of hemicellulose already at 240 °C, while cellulose degradation becomes significant above 270 °C torrefaction. Several methods including Klason lignin method, solid state NMR and Py-GC-MS analyses were applied to measure the changes in lignin during torrefaction. The changes in the ratio of phenyl, guaiacyl and syringyl units show that lignin degrades already at 240 °C to a small extent. To investigate the changes in the extractives from acetone extraction during torrefaction, gravimetric method, HP-SEC and GC-FID followed by GC-MS analysis were performed. The content of acetone-extractable material increases already at 240 °C torrefaction through the degradation of carbohydrate and lignin. The molecular weight of the acetone-extractable material decreases with increasing the torrefaction temperature. The formation of some valuable materials like syringaresinol or vanillin is also observed which is important from biorefinery perspective. To investigate the change in the chemical association of ash-forming elements in birch wood during torrefaction, chemical fractionation was performed on the original and torrefied birch samples. These results give a first understanding of the changes in the association of ashforming elements during torrefaction. The most significant changes can be seen in the distribution of calcium, magnesium and manganese, with some change in water solubility seen in potassium. These changes may in part be due to the destruction of carboxylic groups. In addition to some changes in water and acid solubility of phosphorous, a clear decrease in the concentration of both chlorine and sulfur was observed. This would be a significant additional benefit for the combustion of torrefied biomass. Another objective of this work is studying the impact of organically bound K, Na, Ca and Mn on mass loss of biomass during torrefaction. These elements were of interest because they have been shown to be catalytically active in solid fuels during pyrolysis and/or gasification. The biomasses were first acid washed to remove the ash-forming matters and then organic sites were doped with K, Na, Ca or Mn. The results show that K and Na bound to organic sites can significantly increase the mass loss during torrefaction. It is also seen that Mn bound to organic sites increases the mass loss and Ca addition does not influence the mass loss rate on torrefaction. This increase in mass loss during torrefaction with alkali addition is unlike what has been found in the case of pyrolysis where alkali addition resulted in a reduced mass loss. These results are important for the future operation of torrefaction plants, which will likely be designed to handle various biomasses with significantly different contents of K. The results imply that shorter retention times are possible for high K-containing biomasses. The mass loss of spruce wood with different content of K was modeled using a two-step reaction model based on four kinetic rate constants. The results show that it is possible to model the mass loss of spruce wood doped with different levels of K using the same activation energies but different pre-exponential factors for the rate constants. Three of the pre-exponential factors increased linearly with increasing K content, while one of the preexponential factors decreased with increasing K content. Therefore, a new torrefaction model was formulated using the hemicellulose and cellulose content and K content. The new torrefaction model was validated against the mass loss during the torrefaction of aspen, miscanthus, straw and bark. There is good agreement between the model and the experimental data for the other biomasses, except bark. For bark, the mass loss of acetone extractable material is also needed to be taken into account. The new model can describe the kinetics of mass loss during torrefaction of different types of biomass. This is important for considering fuel flexibility in torrefaction plants.
Resumo:
The purpose of this Master´s Thesis is to develop asset management and its practices in case company. District heating and cooling systems operated by case company around Finland, Sweden, Poland and the Baltics form an enormous-sized asset base where some parts are starting to reach their end of life-cycles. Large-sized asset renewal actions are under discussion and maintenance spending is increasing. Financially justified decisions in changing business environment are needed. Asset management is one of the most important concepts for production organization which operates with capital-intensive production assets. Organizations profitability is highly dependent on assets´ performance. Such assets, like district heating and cooling systems, should be utilized as efficiently as possible within their life-cycles but also maintained and renewed optimally. In this qualitative thesis, empirical interview study was conducted to describe the current situation on how the assets are managed in the case company and to examine the readiness to implement a new, risk-based solution. Asset management revealed to be a very well-known concept. From proposed risk-based asset management point of view, several key observations were made. It was seen as a suitable solution, but further development will be needed. Based on the need and findings, several key processes and frameworks were created and also tested with a case study. Assets` condition monitoring should be improved, which would have a positive impact on event probability assessment. Risk acceptance is also a thing to be discussed further. When the evaluation becomes fluent in single investment cases, portfolio-level expansion should be considered and started. As a result, thesis proposes a solution how risk-based asset management could be performed practically in a capital-intensive case company in order to optimize the maintenance spending in a long run. Created practical framework is made universal: similar principles can be applied into multiple cases in case company but also in other energy companies. Risk-based asset management`s benefits could be utilized best in portfolio-level optimization where the capital would be invested to the most important objects from total risk point of view. Eventually, such approach would allow case company to optimize capital spending in a situation where funds are not adequate to cover all the mandatory needs and prioritization between the investment alternatives will truly be needed.
Resumo:
Tämän diplomityön tarkoitus oli selvittää Mäntsälän Sähkö Oy:n kaukolämpöliiketoiminnan nykytila ja kehityskohteet. Tutkimuskysymykset olivat: 1) Millaisilla toimenpiteillä varmistetaan kaukolämpöliiketoiminnan kannattavuus tulevaisuudessa? ja 2) Millaisia mahdollisuuksia älykäs kaukolämpö tuo kaukolämpöliiketoiminnalle? Tutkimus suoritettiin perehtymällä aiheen kirjallisuuteen ja uutisiin. Takaisinmaksuajan menetelmällä arvioitiin maakaasun korvaamisen kannattavuutta. Työn tuloksena voitiin todeta, että kaukolämmön hinnoittelua kannattaa kehittää kustannusvastaavampaan suuntaan. Nykyinen kaukolämmön energiankulutukseen painottuva hinnoittelu ei sovi uusille rakennuksille, jotka kuluttavat vähän energiaa. Yleistyvät hybridilämmitysjärjestelmät on otettava huomioon hinnoittelussa. Kaukolämmön kausihinnoittelu toisi etuja asiakkaalle, kaukolämpöyhtiölle sekä ympäristölle. Kaukolämmön kulutuksen tuntimittaus mahdollistaisi siirtymisen kaukolämpötehoon perustuvaan hinnoitteluun. Kaukolämmön hinta on ollut Mäntsälän Sähkö Oy:llä suhteellisen korkea. Korkea hinta johtuu enimmäkseen maakaasulla tuotetun kaukolämmön korkeista tuotantokustannuksista. Kaukolämmön tuotantoa voidaan kehittää kannattavammaksi, vaikka lämmöntalteenottolaitoksen oletettu lämmöntuotanto kattaa Mäntsälän lämmöntarpeesta noin puolet ja vähentää tuotantokustannuksia. Nykyisten maakaasukattiloiden käyttäminen pelletin pölypolttoon olisi teknisten muutoksien avulla mahdollista. Pölypolton kannattavuus riippuu erityisesti puupelletin ja maakaasun hintaerosta. Älykäs kaukolämpöjärjestelmä voisi automaattisesti tasoittaa kaukolämmön kysyntää yhdessä lämpövaraston kanssa. Tällöin huippulämpölaitosten käyttö vähentyisi ja lämmöntuotannon kustannukset pienentyisivät. Älykäs kaukolämpöjärjestelmä ja kaukolämpötehon tuntimittaus mahdollistaisivat myös kaksisuuntaisen kaukolämpökaupan.
Resumo:
The purpose of this master’s thesis is to gain an understanding of passive safety systems’ role in modern nuclear reactors projects and to research the failure modes of passive decay heat removal safety systems which use phenomenon of natural circulation. Another purpose is to identify the main physical principles and phenomena which are used to establish passive safety tools in nuclear power plants. The work describes passive decay heat removal systems used in AES-2006 project and focuses on the behavior of SPOT PG system. The descriptions of the main large-scale research facilities of the passive safety systems of the AES-2006 power plant are also included. The work contains the calculations of the SPOT PG system, which was modeled with thermal-hydraulic system code TRACE. The dimensions of the calculation model are set according to the dimensions of the real SPOT PG system. In these calculations three parameters are investigated as a function of decay heat power: the pressure of the system, the natural circulation mass flow rate around the closed loop, and the level of liquid in the downcomer. The purpose of the calculations is to test the ability of the SPOT PG system to remove the decay heat from the primary side of the nuclear reactor in case of failure of one, two, or three loops out of four. The calculations show that three loops of the SPOT PG system have adequate capacity to provide the necessary level of safety. In conclusion, the work supports the view that passive systems could be widely spread in modern nuclear projects.