80 resultados para Moisture Level
Resumo:
Asthma and allergy are common diseases and their prevalence is increasing. One of the hypotheses that explains this trend is exposure to inhalable chemicals such as traffi c-related air pollution. Epidemiological research supports this theory, as a correlation between environmental chemicals and allergic respiratory diseases has been found. In addition to ambient airborne particles, one may be exposed to engineered nanosized materials that are actively produced due to their favorable physico-chemical properties compared to their bulk size counterparts. On the cellular level, improper activity of T helper (Th) cells has been connected to allergic reactions. Th cells can differentiate into functionally different effector subsets, which are identifi ed according to their characteristic cytokine profi les resulting in specifi c ability to communicate with other cells. Th2 cells activate humoral immunity and stimulate eradication of extracellular pathogens. However, persistent predominance of Th2 cells is involved in a development of number of allergic diseases. The cytokine environment at the time of antigen recognition is the major factor determining the polarization of a naïve Th cell. Th2 cell differentiation is initiated by IL4, which signals via transcription factor STAT6. Although the importance of this pathway has been evaluated in the mouse studies, the signaling components involved have been largely unknown. The aim of this thesis was to identify molecules, which are under the control of IL4 and STAT6 in Th cells. This was done by using system-level analysis of STAT6 target genes at genome, mRNA and protein level resulting in identifi cation of various genes previously not connected to Th2 cell phenotype acquisition. In the study, STAT6-mediated primary and secondary target genes were dissection from each other and a detailed transcriptional kinetics of Th2 cell polarization of naïve human CD4+ T cells was collected. Integration of these data revealed the hierarchy of molecular events that mediates the differentiation towards Th2 cell phenotype. In addition, the results highlighted the importance of exploiting proteomics tools to complement the studies on STAT6 target genes identifi ed through transcriptional profi ling. In the last subproject, the effects of the exposure with ZnO and TiO2 nanoparticles was analyzed in Jurkat T cell line and in primary human monocyte-derived macrophages and dendritic cells to evaluate their toxicity and potential to cause infl ammation. Identifi cation of ZnO-derived gene expression showed that the same nanoparticles may elicit markedly distinctive responses in different cell types, thus underscoring the need for unbiased profi ling of target genes and pathways affected. The results gave additional proof that the cellular response to nanosized ZnO is due to leached Zn2+ ions. The approach used in ZnO and TiO2 nanoparticle study demonstrated the value of assessing nanoparticle responses through a toxicogenomics approach. The increased knowledge of Th2 cell signaling will hopefully reveal new therapeutic nodes and eventually improve our possibilities to prevent and tackle allergic infl ammatory diseases.
Resumo:
Kuppikartongin yksi tärkeimmistä ominaisuuksista on reunaimeytymän vastustuskyky, joka tulee olla riittävällä tasolla laadun takaamiseksi. Koska yksinkertainen juomakuppi on bulkki¬tuote, ei sen raakareunaa kannata taloudellisuuden vuoksi suojata tätä varten kehitellyillä menetelmillä vaan itse kartongin tulee vastustaa nesteitä riittävässä määrin. Tämän diplomityön tarkoituksena oli selvittää hydrofobointiin käytettävän massaliiman (hartsi) sekä pintaliiman joukkoon annosteltavan lisäaineen välinen optimaalinen suhde parhaan vastustuskyvyn saavuttamiseksi. Lisäksi selvitettiin joidenkin liimapuristimen ajo-olosuhteiden vaikutusta pintaliiman pick-upiin sekä koneen pH-tason oikeellisuus. Jauhatuksen vaikutusta tutkittiin lähinnä historiatietojen avulla. Tutkimus koostui viidestä tehdasmittakaavaisesta koeajosta, joiden avulla selvitettiin muuttujien vaikutus sisäisellä reunaimeytymän määritysmenetelmällä sekä määrittä¬mällä koepisteistä kulloinkin mielenkiinnon kohteena olleet kemikaalipitoisuudet. Viimeisen koeajon koepisteet jalostettiin lisäksi valmiiksi kupeiksi. Käytetty reunaimeytymän määritysmenetelmä osoittautui virhealttiiksi eivätkä raakakartongista tehtyjen määritysten tulokset korreloineet kovinkaan voimakkaasti PE-päällystettyjen näytteiden kanssa. Menetelmän kehitystä on viety eteenpäin tämän työn rinnalla ja työ jatkuu edelleen. Lisäksi kartongin hartsipitoisuusmääritysten tuloksista paljastui ristiriitaisuuksia, joiden vuoksi menetelmää uusittiin voimakkaasti. Reunaimeytymän vastustuksen riittävyydeksi koneella käytettävien massaliima-annosten tulee olla vähintään valitulla nollatasolla kaikissa kerroksissa ja pintaliiman lisäaine tulee pitää käytössä. Mikäli lisäaine jätetään pois käytöstä, tulee massaliima-annokset olla hyvin korkeita, eikä tämäkään takaa täysin reunaimeytymätöntä lopputuotetta. Lisäaineen ollessa käytössä ei suuremmalla massaliima-annoksella ole puolestaan merkittävää vaikutusta. Konetta ajetaan nykyisin hyvin alhaisella pH-tasolla, mutta tason nostaminen aiheuttaa selvän liimauksen heikkenemisen. Liimapuristimelle tulevan radan kosteudella ja pintaliiman kuiva-aineella ei näyttäisi olevan vaikutusta kartongin reunaimeytymän vastustuskykyyn. Myöskään taustakerroksen koivun jauhatusasteella ei ole merkitystä alueella, jolla koneella operoidaan. CTMP-massan jauhatuksen tulee sen sijaan olla riittävä, jotta keskikerrokseen ei synny yksittäisiä, pitkiä imeytymiä.
Resumo:
Problem of modeling of anaesthesia depth level is studied in this Master Thesis. It applies analysis of EEG signals with nonlinear dynamics theory and further classification of obtained values. The main stages of this study are the following: data preprocessing; calculation of optimal embedding parameters for phase space reconstruction; obtaining reconstructed phase portraits of each EEG signal; formation of the feature set to characterise obtained phase portraits; classification of four different anaesthesia levels basing on previously estimated features. Classification was performed with: Linear and quadratic Discriminant Analysis, k Nearest Neighbours method and online clustering. In addition, this work provides overview of existing approaches to anaesthesia depth monitoring, description of basic concepts of nonlinear dynamics theory used in this Master Thesis and comparative analysis of several different classification methods.
Resumo:
Kristiina Hormia-Poutasen esitys Liber-konferenssissa Münchenissa, Saksassa 27.6.2013.
Resumo:
Waste combustion has gone from being a volume reducing discarding-method to an energy recovery process for unwanted material that cannot be reused or recycled. Different fractions of waste are used as fuel today, such as; municipal solid waste, refuse derived fuel, and solid recovered fuel. Furthermore, industrial waste, normally a mixture between commercial waste and building and demolition waste, is common, either as separate fuels or mixed with, for example, municipal solid waste. Compared to fossil or biomass fuels, waste mixtures are extremely heterogeneous, making it a complicated fuel. Differences in calorific values, ash content, moisture content, and changing levels of elements, such as Cl and alkali metals, are common in waste fuel. Moreover, waste contains much higher levels of troublesome trace elements, such as Zn, which is thought to accelerate a corrosion process. Varying fuel quality can be strenuous on the boiler system and may cause fouling and corrosion of heat exchanger surfaces. This thesis examines waste fuels and waste combustion from different angles, with the objective of giving a better understanding of waste as an important fuel in today’s fuel economy. Several chemical characterisation campaigns of waste fuels over longer time periods (10-12 months) was used to determine the fossil content of Swedish waste fuels, to investigate possible seasonal variations, and to study the presence of Zn in waste. Data from the characterisation campaigns were used for thermodynamic equilibrium calculations to follow trends and determine the effect of changing concentrations of various elements. The thesis also includes a study of the thermal behaviour of Zn and a full—scale study of how the bed temperature affects the volatilisation of alkali metals and Zn from the fuel. As mixed waste fuel contains considerable amounts of fresh biomass, such as wood, food waste, paper etc. it would be wrong to classify it as a fossil fuel. When Sweden introduced waste combustion as a part of the European Union emission trading system in the beginning of 2013 there was a need for combustion plants to find a usable and reliable method to determine the fossil content. Four different methods were studied in full-scale of seven combustion plants; 14Canalysis of solid waste, 14C-analysis of flue gas, sorting analysis followed by calculations, and a patented balance method that is using a software program to calculate the fossil content based on parameters from the plant. The study showed that approximately one third of the coal in Swedish waste mixtures has fossil origins and presented the plants with information about the four different methods and their advantages and disadvantages. Characterisation campaigns also showed that industrial waste contain higher levels of trace elements, such as Zn. The content of Zn in Swedish waste fuels was determined to be approximately 800 mg kg-1 on average, based on 42 samples of solid waste from seven different plants with varying mixtures between municipal solid waste and industrial waste. A review study of the occurrence of Zn in fuels confirmed that the highest amounts of Zn are present in waste fuels rather than in fossil or biomass fuels. In tires, Zn is used as a vulcanizing agent and can reach concentration values of 9600-16800 mg kg-1. Waste Electrical and Electronic Equipment is the second Zn-richest fuel and even though on average Zn content is around 4000 mg kg-1, the values of over 19000 mg kg-1 were also reported. The increased amounts of Zn, 3000-4000 mg kg-1, are also found in municipal solid waste, sludge with over 2000 mg kg-1 on average (some exceptions up to 49000 mg kg-1), and other waste derived fuels (over 1000 mg kg-1). Zn is also found in fossil fuels. In coal, the average level of Zn is 100 mg kg-1, the higher amount of Zn was only reported for oil shale with values between 20-2680 mg kg-1. The content of Zn in biomass is basically determined by its natural occurrence and it is typically 10-100 mg kg-1. The thermal behaviour of Zn is of importance to understand the possible reactions taking place in the boiler. By using thermal analysis three common Zn-compounds were studied (ZnCl2, ZnSO4, and ZnO) and compared to phase diagrams produced with thermodynamic equilibrium calculations. The results of the study suggest that ZnCl2(s/l) cannot exist readily in the boiler due to its volatility at high temperatures and its conversion to ZnO in oxidising conditions. Also, ZnSO4 decomposes around 680°C, while ZnO is relatively stable in the temperature range prevailing in the boiler. Furthermore, by exposing ZnO to HCl in a hot environment (240-330°C) it was shown that chlorination of ZnO with HCl gas is possible. Waste fuel containing high levels of elements known to be corrosive, for example, Na and K in combination with Cl, and also significant amounts of trace elements, such as Zn, are demanding on the whole boiler system. A full-scale study of how the volatilisation of Na, K, and Zn is affected by the bed temperature in a fluidised bed boiler was performed parallel with a lab-scale study with the same conditions. The study showed that the fouling rate on deposit probes were decreased by 20 % when the bed temperature was decreased from 870°C to below 720°C. In addition, the lab-scale experiments clearly indicated that the amount of alkali metals and Zn volatilised depends on the reactor temperature.
Resumo:
The main aim of this thesis is to study the effect of mineral fillers on the properties of extruded wood-polypropylene composites (WPC). The studied minerals are Talc, Calcite (CaCO3), two quantities of Wollastonite and Soapstone, and the level of mineral addition is 20 w-%. The study shows that mineral fillers can be used to modify and improve the properties of woodplastic composites. Especially the moisture-related properties of WPCs were found to be improved significantly by mineral addition. As the WPCs of the studied type are commonly used in outdoor applications, this is of importance in terms of usability. In machining, the addition of two minerals retained the surface roughness at same level throughout the test, indicating a favorable effect on machinability. The use of hard minerals shortened the tool life in machining. In general, a modest increase in density was observed. In many of the studied properties, no apparent influence of mineral addition was found, indicating that the properties were not weakened. An overall result was that talc showed the best overall performance, indicating that it can be used as an active filler improving most of the studied properties, especially moisture resistance. Calcite was found to have nearly similar performance. According to the findings, mineral addition to wood-plastic composites appears to be beneficial; especially moisture resistance can be enhanced without diminishing the other properties or usability in general.
Resumo:
Electrokinetics has emerged as a potential technique for in situ soil remediation and especially unique because of the ability to work in low permeability soil. In electrokinetic remediation, non-polar contaminants like most organic compounds are transported primarily by electroosmosis, thus the process is effective only if the contaminants are soluble in pore fluid. Therefore, enhancement is needed to improve mobility of these hydrophobic compounds, which tend to adsorb strongly to the soil. On the other hand, as a novel and rapidly growing science, the applications of ultrasound in environmental technology hold a promising future. Compared to conventional methods, ultrasonication can bring several benefits such as environmental friendliness (no toxic chemical are used or produced), low cost, and compact instrumentation. It also can be applied onsite. Ultrasonic energy applied into contaminated soils can increase desorption and mobilization of contaminants and porosity and permeability of soil through developing of cavitation. The research investigated the coupling effect of the combination of these two techniques, electrokinetics and ultrasonication, in persistent organic pollutant removal from contaminated low permeability clayey soil (with kaolin as a model medium). The preliminary study checked feasibility of ultrasonic treatment of kaolin highly contaminated by persistent organic pollutants (POPs). The laboratory experiments were conducted in various conditions (moisture, frequency, power, duration time, initial concentration) to examine the effects of these parameters on the treatment process. Experimental results showed that ultrasonication has a potential to remove POPs, although the removal efficiencies were not high with short duration time. The study also suggested intermittent ultrasonication over longer time as an effective means to increase the removal efficiencies. Then, experiments were conducted to compare the performances among electrokinetic process alone and electrokinetic processes combined with surfactant addition and mainly with ultrasonication, in designed cylinders (with filtercloth separating central part and electrolyte parts) and in open pans. Combined electrokinetic and ultrasonic treatment did prove positive coupling effect compared to each single process alone, though the level of enhancement is not very significant. The assistance of ultrasound in electrokinetic remediation can help reduce POPs from clayey soil by improving the mobility of hydrophobic organic compounds and degrading these contaminants through pyrolysis and oxidation. Ultrasonication also sustains higher current and increases electroosmotic flow. Initial contaminant concentration is an essential input parameter that can affect the removal effectiveness.
Resumo:
The objective of this Master’s Thesis was to research factors influencing and enhancing individual level knowledge sharing in offshore projects which often involve uncertainty of the knowledge provider’s own future. The purpose was to understand why individuals are willing to share their knowledge under these kinds of circumstances. In addition the goal was to identify obstacles to interpersonal knowledge sharing in order to understand how to mitigate their influence. The research was conducted as a qualitative multiple case study in a global IT company, and the data was gathered using semi-structured personal theme interviews within two different offshore projects. In order to a gain a wider perspective on the matter, some management representatives were interviewed as well. Data was analysed with the inductive content analysis method. Results of the study indicate that individuals are willing to share their knowledge despite of uncertainty if they are motivated, if they are provided with opportunities to do so, and if they have skills, competence and experience to share their knowledge. A strong knowledge sharing culture in the organization or team also works as a strong incentive for individual level knowledge sharing. The findings suggest that even under uncertain conditions it is possible to encourage people to share their knowledge if uncertainty can be decreased to a bearable level, a robust and personal connection and relationship between the knowledge provider and acquirer can be created and suitable opportunities for knowledge sharing are provided. In addition, based on the results the support and commitment of management and HR in addition to favourable environmental circumstances play an essential role in building a bridge between the knowledge provider and acquirer in order to create a virtual environment and space for knowledge sharing: Ba.
Resumo:
Nowadays, when most of the business are moving forward to sustainability by providing or getting different services from different vendors, Service Level Agreement (SLA) becomes very important for both the business providers/vendors and as well as for users/customers. There are many ways to inform users/customers about various services with its inherent execution functionalities and even non-functional/Quality of Services (QoS) aspects through negotiating, evaluating or monitoring SLAs. However, these traditional SLA actually do not cover eco-efficient green issues or IT ethics issues for sustainability. That is why green SLA (GSLA) should come into play. GSLA is a formal agreement incorporating all the traditional commitments as well as green issues and ethics issues in IT business sectors. GSLA research would survey on different traditional SLA parameters for various services like as network, compute, storage and multimedia in IT business areas. At the same time, this survey could focus on finding the gaps and incorporation of these traditional SLA parameters with green issues for all these mentioned services. This research is mainly points on integration of green parameters in existing SLAs, defining GSLA with new green performance indicators and their measurable units. Finally, a GSLA template could define compiling all the green indicators such as recycling, radio-wave, toxic material usage, obsolescence indication, ICT product life cycles, energy cost etc for sustainable development. Moreover, people’s interaction and IT ethics issues such as security and privacy, user satisfaction, intellectual property right, user reliability, confidentiality etc could also need to add for proposing a new GSLA. However, integration of new and existing performance indicators in the proposed GSLA for sustainable development could be difficult for ICT engineers. Therefore, this research also discovers the management complexity of proposed green SLA through designing a general informational model and analyses of all the relationships, dependencies and effects between various newly identified services under sustainability pillars. However, sustainability could only be achieved through proper implementation of newly proposed GSLA, which largely depends on monitoring the performance of the green indicators. Therefore, this research focuses on monitoring and evaluating phase of GSLA indicators through the interactions with traditional basic SLA indicators, which would help to achieve proper implementation of future GSLA. Finally, this newly proposed GSLA informational model and monitoring aspects could definitely help different service providers/vendors to design their future business strategy in this new transitional sustainable society.
Resumo:
y+LAT1 is a transmembrane protein that, together with the 4F2hc cell surface antigen, forms a transporter for cationic amino acids in the basolateral plasma membrane of epithelial cells. It is mainly expressed in the kidney and small intestine, and to a lesser extent in other tissues, such as the placenta and immunoactive cells. Mutations in y+LAT1 lead to a defect of the y+LAT1/4F2hc transporter, which impairs intestinal absorbance and renal reabsorbance of lysine, arginine and ornithine, causing lysinuric protein intolerance (LPI), a rare, recessively inherited aminoaciduria with severe multi-organ complications. This thesis examines the consequences of the LPI-causing mutations on two levels, the transporter structure and the Finnish patients’ gene expression profiles. Using fluorescence resonance energy transfer (FRET) confocal microscopy, optimised for this work, the subunit dimerisation was discovered to be a primary phenomenon occurring regardless of mutations in y+LAT1. In flow cytometric and confocal microscopic FRET analyses, the y+LAT1 molecules exhibit a strong tendency for homodimerisation both in the presence and absence of 4F2hc, suggesting a heterotetramer for the transporter’s functional form. Gene expression analysis of the Finnish patients, clinically variable but homogenic for the LPI-causing mutation in SLC7A7, revealed 926 differentially-expressed genes and a disturbance of the amino acid homeostasis affecting several transporters. However, despite the expression changes in individual patients, no overall compensatory effect of y+LAT2, the sister y+L transporter, was detected. The functional annotations of the altered genes included biological processes such as inflammatory response, immune system processes and apoptosis, indicating a strong immunological involvement for LPI.
Resumo:
Torrefaction is the partial pyrolysis of wood characterised by thermal degradation of predominantly hemicellulose under inert atmosphere. Torrefaction can be likened to coffee roasting but with wood in place of beans. This relatively new process concept makes wood more like coal. Torrefaction has attracted interest because it potentially enables higher rates of co-firing in existing pulverised-coal power plants and hence greater net CO2 emission reductions. Academic and entrepreneurial interest in torrefaction has sky rocketed in the last decade. Research output has focused on the many aspects of torrefaction – from detailed chemical changes in feedstock to globally-optimised production and supply scenarios with which to sustain EU emission-cutting directives. However, despite its seemingly simple concept, torrefaction has retained a somewhat mysterious standing. Why hasn’t torrefied pellet production become fully commercialised? The question is one of feasibility. This thesis addresses this question. Herein, the feasibility of torrefaction in co-firing applications is approached from three directions. Firstly, the natural limitations imposed by the structure of wood are assessed. Secondly, the environmental impact of production and use of torrefied fuel is evaluated and thirdly, economic feasibility is assessed based on the state of the art of pellet making. The conclusions reached in these domains are as follows. Modification of wood’s chemical structure is limited by its naturally existing constituents. Consequently, key properties of wood with regards to its potential as a co-firing fuel have a finite range. The most ideal benefits gained from wood torrefaction cannot all be realised simultaneously in a single process or product. Although torrefaction at elevated pressure may enhance some properties of torrefied wood, high-energy torrefaction yields are achieved at the expense of other key properties such as heating value, grindability, equilibrium moisture content and the ability to pelletise torrefied wood. Moreover, pelletisation of even moderately torrefied fuels is challenging and achieving a standard level of pellet durability, as required by international standards, is not trivial. Despite a reduced moisture content, brief exposure of torrefied pellets to water from rainfall or emersion results in a high level of moisture retention. Based on the above findings, torrefied pellets are an optimised product. Assessment of energy and CO2-equivalent emission balance indicates that there is no environmental barrier to production and use of torrefied pellets in co-firing. A long product transport distance, however, is necessary in order for emission benefits to exceed those of conventional pellets. Substantial CO2 emission reductions appear possible with this fuel if laboratory milling results carry over to industrial scales for direct co-firing. From demonstrated state-of-the-art pellet properties, however, the economic feasibility of torrefied pellet production falls short of conventional pellets primarily due to the larger capital investment required for production. If the capital investment for torrefied pellet production can be reduced significantly or if the pellet-making issues can be resolved, the two production processes could be economically comparable. In this scenario, however, transatlantic shipping distances and a dry fuel are likely necessary for production to be viable. Based on demonstrated pellet properties to date, environmental aspects and production economics, it is concluded that torrefied pellets do not warrant investment at this time. However, from the presented results, the course of future research in this field is clear.