73 resultados para plant foods
Resumo:
The purpose of this study was to investigate the nature of co-operation between a project owner and an outside engineering consultant in combined heat and power plant implementation projects. Moreover, as another focal subject of the study was to familiarize the purchasing behavior of the energy producer and how an outside engineering consultant participated into different stages of the purchasing process. The study was carried out as a multiple case study including altogether six Finnish power plant implementation projects that had been taken into commercial use during 1995 – 2015. By adjusting the findings of empirical interview data and comparing those to the theoretical framework concerning, among others, Finnish energy production, engineering consulting businesses, delivery methods of construction project and finally the purchasing process, it can be concluded that especially in the power plant implementation projects in the past have a great influence to decisions made during the project. The role of the main engineering consultant is to act as an assistant, who helps to achieve the project goals successfully rather than an advisor who only knows how the project should be conducted. At least in these five project cases this was the case, meaning that the final decision power always remaining with project owner.
Resumo:
Cutin and suberin are structural and protective polymers of plant surfaces. The epidermal cells of the aerial parts of plants are covered with an extracellular cuticular layer, which consists of polyester cutin, highly resistant cutan, cuticular waxes and polysaccharides which link the layer to the epidermal cells. A similar protective layer is formed by a polyaromatic-polyaliphatic biopolymer suberin, which is present particularly in the cell walls of the phellem layer of periderm of the underground parts of plants (e.g. roots and tubers) and the bark of trees. In addition, suberization is also a major factor in wound healing and wound periderm formation regardless of the plants’ tissue. Knowledge of the composition and functions of cuticular and suberin polymers is important for understanding the physiological properties for the plants and for nutritional quality when these plants are consumed as foods. The aims of the practical work were to assess the chemical composition of cuticular polymers of several northern berries and seeds and suberin of two varieties of potatoes. Cutin and suberin were studied as isolated polymers and further after depolymerization as soluble monomers and solid residues. Chemical and enzymatic depolymerization techniques were compared and a new chemical depolymerization method was developed. Gas chromatographic analysis with mass spectrometric detection (GC-MS) was used to assess the monomer compositions. Polymer investigations were conducted with solid state carbon-13 cross polarization magic angle spinning nuclear magnetic resonance spectroscopy (13C CP-MAS NMR), Fourier transform infrared spectroscopy (FTIR) and microscopic analysis. Furthermore, the development of suberin over one year of post-harvest storage was investigated and the cuticular layers from berries grown in the North and South of Finland were compared. The results show that the amounts of isolated cuticular layers and cutin monomers, as well as monomeric compositions vary greatly between the berries. The monomer composition of seeds was found to differ from the corresponding berry peel monomers. The berry cutin monomers were composed mostly of long-chain aliphatic ω-hydroxy acids, with various mid-chain functionalities (double-bonds, epoxy, hydroxy and keto groups). Substituted α,ω-diacids predominated over ω-hydroxy acids in potato suberin monomers and slight differences were found between the varieties. The newly-developed closed tube chemical method was found to be suitable for cutin and suberin analysis and preferred over the solvent-consuming and laborious reflux method. Enzymatic hydrolysis with cutinase was less effective than chemical methanolysis and showed specificity towards α,ω-diacid bonds. According to 13C CP-MAS NMR and FTIR, the depolymerization residues contained significant amounts of aromatic structures, polysaccharides and possible cutan-type aliphatic moieties. Cultivation location seems to have effect on cuticular composition. The materials studied contained significant amounts of different types of biopolymers that could be utilized for several purposes with or without further processing. The importance of the so-called waste material from industrial processes of berries and potatoes as a source of either dietary fiber or specialty chemicals should be further investigated in detail. The evident impact of cuticular and suberin polymers, among other fiber components, on human health should be investigated in clinical trials. These by-product materials may be used as value-added fiber fractions in the food industry and as raw materials for specialty chemicals such as lubricants and emulsifiers, or as building blocks for novel polymers.
Resumo:
There are reasons of necessity in bio-fuel use and bio-energy fast development. It includes the material about bio-energy technologies, applications and methods. There are basic thermodynamics and economic theories. The economic calculation presents the comparison between two combinations. There are boiler plant below 20 MW in combination with ablative pyrolysis plant for bio-oil production and CHP plant below 100 MW in combination with the RTP pyrolysis bio-oil production technology. It provides a material about wood chips and bio-oil characteristics and explains it nature, presents the situation around the bio-fuel market or bio-fuel trade. There is a description of pyrolysis technologies such as ablative and RTP. The liquid product of the pyrolysis processes is bio-oil. The bio-oil could be different even of the same production process, because of the raw material nature and characteristics. The calculation shows advantages and weaknesses of combinations and obtained a proof of suppositions. The next thing, proven by this work is the fact that to get more efficiency from energy project it is good possibility to built plants in combinations.
Resumo:
Astringency is traditionally thought to be induced by plant tannins in foods. Because of this current research concerning the mechanism of astringency is focused on tannin‐protein interactions and thus on precipitation, which may be perceived by mechanoreceptors. However, astringency is elicited by a wide range of different phenolic compounds, as well as, some non‐phenolic compounds in various foods. Many ellagitannins or smaller compounds that contribute to astringent properties do not interact with salivary proteins and may be directly perceived through some receptors. Generally, the higher degree of polymerization of proanthocyanidins can be associated with more intense astringency. However, the astringent properties of smaller phenolic compounds may not be directly predicted from the structure of a compound, although glycosylation has a significant role. The astringency of organic acids may be directly linked to the perception of sourness, and this increases along with decreasing pH. Astringency can be divided into different sub‐qualities, including even other qualities than traditional mouth‐drying, puckering or roughing sensations. Astringency is often accompanied by bitter or sour or both taste properties. The different sub‐qualities can be influenced by different astringent compounds. In general, the glycolysation of the phenolic compound results in more velvety and smooth mouthdrying astringency. Flavonol glycosides and other flavonoid compounds and ellagitannins contribute to this velvety mouthdrying astringency. Additionally, they often lack the bitter properties. Proanthocyanidins and phenolic acids elicit more puckering and roughing astringency with some additional bitter properties. Quercetin 3‐O‐rutinoside, along with other quercetin glycosides, is among the key astringent compounds in black tea and red currants. In foods, there are always various other additional attributes that are perceived at the same with astringency. Astringent compounds themselves may have other sensory characteristics, such as bitter or sour properties, or they may enhance or suppress other sensory properties. Components contributing to these other properties, such as sugars, may also have similar effects on astringent sensations. Food components eliciting sweetness or fattiness or some polymeric polysaccharides can be used to mask astringent subqualities. Astringency can generally be referred to as a negative contributor to the liking of various foods. On the other hand, perceptions of astringent properties can vary among individuals. Many genetic factors that influence perceptions of taste properties, such as variations in perceiving a bitter taste or variations in saliva, may also effect the perception of astringency. Individuals who are more sensitive to different sensations may notice the differences between astringent properties more clearly. This may not have effects on the overall perception of astringency. However, in many cases, the liking of astringent foods may need to be learned by repetitive exposure. Astringency is often among the key sensory properties forming the unique overall flavour of certain foods, and therefore it also influences whether or not a food is liked. In many cases, astringency may be an important sub‐property suppressed by other more abundant sensory properties, but it may still have a significant contribution to the overall flavour and thus consumer preferences. The results of the practical work of this thesis show that the astringent phenolic compounds are mostly located in the skin fractions of black currants, crowberries and bilberries (publications I–III). The skin fractions themselves are rather tasteless. However, the astringent phenolic compounds can be efficiently removed from these skin fractions by consecutive ethanol extractions. Berries contain a wide range of different flavonol glycosides, hydroxycinnamic acid derivatives and anthocyanins and some of them strongly contribute to the different astringent and bitterness properties. Sweetness and sourness are located in the juice fractions along with the majority of sugars and fruit acids. The sweet and sour properties of the juice may be used to mask the astringent and bitterness properties of the extracts. Enzymatic treatments increase the astringent properties and fermented flavour of the black currant juice and decrease sweetness and freshness due to the effects on chemical compositions (IV). Sourness and sweetness are positive contributors to the liking of crowberry and bilberry fractions, whereas bitterness is more negative (V). Some astringent properties in berries are clearly negative factors, whereas some may be more positive. The liking of berries is strongly influenced by various consumer background factors, such as motives and health concerns. The liking of berries and berry fractions may also be affected by genetic factors, such as variations in the gene hTAS2R38, which codes bitter taste receptors (V).
Resumo:
Kuumahiertoprosessi on erittäin energiaintensiivinen prosessi, jonka energianominaiskulutus (EOK) on yleisesti 2–3.5 MWh/bdt. Noin 93 % energiasta kuluu jauhatuksessa jakautuen niin, että kaksi kolmasosaa kuluu päälinjan ja yksi kolmasosa rejektijauhatuksessa. Siksi myös tämän työn tavoite asetettiin vähentämään energian kulutusta juuri pää- ja rejektijauhatuksessa. Päälinjan jauhatuksessa tutkimuskohteiksi valittiin terityksen, tehojaon ja tuotantotason vaikutus EOK:een. Rejektijauhatuksen tehostamiseen pyrittiin yrittämällä vähentää rejektivirtaamaa painelajittelun keinoin. Koska TMP3 laitoksen jauhatuskapasiteettia on nostettu 25 %, tavoite oli nostaa päälinjan lajittelun kapasiteettia saman verran. Toisena tavoitteena oli pienentää rejektisuhdetta pää- ja rejektilajittelussa ja siten vähentää energiankulutusta rejektijauhatuksessa. Näitä tavoitteita lähestyttiin vaihtamalla päälinjan lajittimiin TamScreen-roottorit ja rejektilajittimiin Metso ProFoil-roottorit ja optimoimalla kuitufraktiot sihtirumpu- ja prosessiparametrimuutoksin. Syöttävällä terätyypillä pystyttiin vähentämään EOK:ta 100 kWh/bdt, mutta korkeampi jauhatusintensiteetti johti myös alempiin lujuusominaisuuksiin, korkeampaan ilmanläpäisyyn ja korkeampaan opasiteettiin. Myös tehojaolla voitiin vaikuttaa EOK:een. Kun ensimmäisen vaiheen jauhinta kuormitettiin enemmän, saavutettiin korkeimmillaan 70 kWh/bdt EOK-vähennys. Tuotantotason mittaamisongelmat heikensivät tuotantotasokoeajojen tuloksia siinä määrin, että näiden tulosten perusteella ei voida päätellä, onko EOK tuotantotasoriippuvainen vai ei. Päälinjan lajittelun kapasiteettia pystyttiin nostamaan TS-roottorilla vain 18 % jääden hieman tavoitetasosta. Rejektilajittelussa pystyttiin vähentämään rejektimäärää huomattavasti Metso ProFoil-roottorilla sekä sihtirumpu- ja prosessiparametrimuutoksin. Lajittamokehityksellä saavutettu EOK-vähennys arvioitiin massarejektisuhteen pienentymisen ja rejektijauhatuksessa käytetyn EOK:n avulla olevan noin 130 kWh/bdt. Yhteenvetona voidaan todeta, että tavoite 300 kWh/bdt EOK-vähennyksestä voidaan saavuttaa työssä käytetyillä tavoilla, mikäli niiden täysi potentiaali hyödynnetään tuotannossa.
Resumo:
The purpose of this master’s thesis was to study ways to increase the operating cost-efficiency of the hydrogen production process by optimizing the process parameters while, at the same time, maintaining plant reliability and safety. The literature part reviewed other hydrogen production and purification processes as well as raw material alternatives for hydrogen production. The experimental part of the master’s thesis was conducted at Solvay Chemicals Finland Oy’s hydrogen plant in spring 2012. It was performed by changing the process parameters, first, one by one, aiming for a more efficient process with clean product gas and lower natural gas consumption. The values of the process parameters were tested based on the information from the literature, process simulation and experiences of previous similar processes. The studied parameters were reformer outlet temperature, shift converter inlet temperature and steam/carbon ratio. The results show that the optimal process conditions are a lower steam/carbon ratio and reformer outlet temperature than the current values of 3.0 and 798 °C. An increase/decrease in the shift conversion inlet temperature does not affect natural gas consumption, but it has an effect on minimizing the process steam overload.
Resumo:
This thesis focuses on the molecular mechanisms regulating the photosynthetic electron transfer reactions upon changes in light intensity. To investigate these mechanisms, I used mutants of the model plant Arabidopsis thaliana impaired in various aspects of regulation of the photosynthetic light reactions. These included mutants of photosystem II (PSII) and light harvesting complex II (LHCII) phosphorylation (stn7 and stn8), mutants of energy-dependent non-photochemical quenching (NPQ) (npq1 and npq4) and of regulation of photosynthetic electron transfer (pgr5). All of these processes have been extensively investigated during the past decades, mainly on plants growing under steady-state conditions, and therefore many aspects of acclimation processes may have been neglected. In this study, plants were grown under fluctuating light, i.e. the alternation of low and high intensities of light, in order to maximally challenge the photosynthetic regulatory mechanisms. In pgr5 and stn7 mutants, the growth in fluctuating light condition mainly damaged PSI while PSII was rather unaffected. It is shown that the PGR5 protein regulates the linear electron transfer: it is essential for the induction of transthylakoid ΔpH that, in turn, activates energy-dependent NPQ and downregulates the activity of cytochrome b6f. This regulation was shown to be essential for the photoprotection of PSI under fluctuations in light intensity. The stn7 mutants were able to acclimate under constant growth light conditions by modulating the PSII/PSI ratio, while under fluctuating growth light they failed in implementing this acclimation strategy. LHCII phosphorylation ensures the balance of the excitation energy distribution between PSII and PSI by increasing the probability for excitons to be trapped by PSI. LHCII can be phosphorylated over all of the thylakoid membrane (grana cores as well as stroma lamellae) and when phosphorylated it constitutes a common antenna for PSII and PSI. Moreover, LHCII was shown to work as a functional bridge that allows the energy transfer between PSII units in grana cores and between PSII and PSI centers in grana margins. Consequently, PSI can function as a quencher of excitation energy. Eventually, the LHCII phosphorylation, NPQ and the photosynthetic control of linear electron transfer via cytochrome b6f work in concert to maintain the redox poise of the electron transfer chain. This is a prerequisite for successful plant growth upon changing natural light conditions, both in short- and long-term.
Resumo:
Waste has been incinerated for energy utilization for more than a hundred years, but the harmful emissions emitted from the incineration plants did not begin to cause concern until the 1980s. Many plants were shutdown and the waste incineration plant in Kyläsaari Helsinki was one of them. In later years, new landfill regulations have increased the interest in waste incineration. During the last year, four new plants were taken into operation in Finland, Westenergy in Vaasa among them. The presence of dust has been observed indoors at Westenergy waste incineration plant. Dust is defined as particles with a diameter above 10 μm, while fine particles have a diameter smaller than 2.5 μm, ultrafine under 0.1 μm and nanoparticles under 0.05 μm. In recent years, the focus of particle health research has been changed to investigate smaller particles. Ultrafine particles have been found to be more detrimental to health than larger particles. Limit values regulating the concentrations of ultrafine particles have not been determined yet. The objective of this thesis was to investigate dust and particles present inside the Westenergy waste incineration facility. The task was to investigate the potential pollutant sources and to give recommendations of how to minimize the presence of dust and particles in the power plant. The total particle number concentrations and size distributions where measured at 15 points inside the plant with an Engine Exhaust Particle Sizer (EEPS) Spectrometer. The measured particles were mainly in the ultrafine size range. Dust was only visually investigated, since the main purpose was to follow the dust accumulation. The measurement points inside the incineration plant were chosen according to investigate exposure to visitors and workers. At some points probable leakage of emissions were investigated. The measurements were carried out during approximately one month in March–April 2013. The results of the measurements showed that elevated levels of dust and particles are present in the indoor air at the waste incineration plant. The cleanest air was found in the control room, warehouse and office. The most polluted air was near the sources that were investigated due to possible leakage and in the bottom ash hall. However, the concentrations were near measured background concentrations in European cities and no leakage could be detected. The high concentrations were assumed to be a result of a lot of dust and particles present on surfaces that had not been cleaned in a while. The main source of the dust and particles present inside the waste incineration plant was thought to be particles and dust from the outside air. Other activities in the area around the waste incineration facility are ground work activities, stone crushing and traffic, which probably are sources of particle formation. Filtration of the outside air prior entering the facility would probably save personnel and visitors from nuisance and save in cleaning and maintenance costs.
Resumo:
Plant-virus interactions are very complex in nature and lead to disease and symptom formation by causing various physiological, metabolic and developmental changes in the host plants. These interactions are mainly the outcomes of viral hijacking of host components to complete their infection cycles and of host defensive responses to restrict the viral infections. Viral genomes contain only a small number of genes often encoding for multifunctional proteins, and all are essential in establishing a viral infection. Thus, it is important to understand the specific roles of individual viral genes and their contribution to the viral life cycles. Among the most important viral proteins are the suppressors of RNA silencing (VSRs). These proteins function to suppress host defenses mediated by RNA silencing and can also serve in other functions, e.g. in viral movement, transactivation of host genes, virus replication and protein processing. Thus these proteins are likely to have a significant impact on host physiology and metabolism. In the present study, I have examined the plant-virus interactions and the effects of three different VSRs on host physiology and gene expression levels by microarray analysis of transgenic plants that express these VSR genes. I also studied the gene expression changes related to the expression of the whole genome of Tobacco mosaic virus (TMV) in transgenic tobacco plants. Expression of the VSR genes in the transgenic tobacco plants causes significant changes in the gene expression profiles. HC-Pro gene derived from the Potyvirus Y (PVY) causes alteration of 748 and 332 transcripts, AC2 gene derived from the African cassava mosaic virus (ACMV) causes alteration of 1118 and 251transcripts, and P25 gene derived from the Potyvirus X (PVX) causes alterations of 1355 and 64 transcripts in leaves and flowers, respectively. All three VSRs cause similar up-regulation in defense, hormonally regulated and different stress-related genes and down-regulation in the photosynthesis and starch metabolism related genes. They also induce alterations that are specific to each viral VSR. The phenotype and transcriptome alterations of the HC-Pro expressing transgenic plants are similar to those observed in some Potyvirus-infected plants. The plants show increased protein degradation, which may be due to the HC-Pro cysteine endopeptidase and thioredoxin activities. The AC2-expressing transgenic plants show a similar phenotype and gene expression pattern as HC-Pro-expressing plants, but also alter pathways related to jasmonic acid, ethylene and retrograde signaling. In the P25 expressing transgenic plants, high numbers of genes (total of 1355) were up-regulated in the leaves, compared to a very low number of down-regulated genes (total of 5). Despite of strong induction of the transcripts, only mild growth reduction and no other distinct phenotype was observed in these plants. As an example of whole virus interactions with its host, I also studied gene expression changes caused by Tobacco mosaic virus (TMV) in tobacco host in three different conditions, i.e. in transgenic plants that are first resistant to the virus, and then become susceptible to it and in wild type plants naturally infected with this virus. The microarray analysis revealed up and down-regulation of 1362 and 1422 transcripts in the TMV resistant young transgenic plants, and up and down-regulation of a total of 1150 and 1200 transcripts, respectively, in the older plants, after the resistance break. Natural TMV infections in wild type plants caused up-regulation of 550 transcripts and down-regulation of 480 transcripts. 124 up-regulated and 29 down-regulated transcripts were commonly altered between young and old TMV transgenic plants, and only 6 up-regulated and none of the down-regulated transcripts were commonly altered in all three plants. During the resistant stage, the strong down-regulation in translation-related transcripts (total of 750 genes) was observed. Additionally, transcripts related to the hormones, protein degradation and defense pathways, cell division and stress were distinctly altered. All these alterations may contribute to the TMV resistance in the young transgenic plants, and the resistance may also be related to RNA silencing, despite of the low viral abundance and lack of viral siRNAs or TMV methylation activity in the plants.
Resumo:
Torrefaction is one of the pretreatment technologies to enhance the fuel characteristics of biomass. The efficient and continuous operation of a torrefaction reactor, in the commercial scale, demands a secure biomass supply, in addition to adequate source of heat. Biorefinery plants or biomass-fuelled steam power plants have the potential to integrate with the torrefaction reactor to exchange heat and mass, using available infrastructure and energy sources. The technical feasibility of this integration is examined in this study. A new model for the torrefaction process is introduced and verified by the available experimental data. The torrefaction model is then integrated in different steam power plants to simulate possible mass and energy exchange between the reactor and the plants. The performance of the integrated plant is investigated for different configurations and the results are compared.
Resumo:
The aim of this study was to research how plant closure announcements affect the market value of the largest pulp and paper industry companies in the world. Also the effect of announcements on competitors was researched and whether the location of plants, timing, reasons for the closures, and characteristics of the closing firms and competitors have an impact on the results. The overall sample included 57 events in the years 2004-2012 and event study was used as a research method. Main theories were signaling theory and spillover effect. According to empirical results, investors consider plant closure announcements as a positive signal for market value. The spillover effect on competitors was, on average, positive and characteristics of the firms and closures had an effect on the results. Furthermore, the market generally predicted the closures and overreacted to them on the announcement day and after it. It is possible for corporate management and investors to learn from the results and use them as support for their decision making.