55 resultados para momentum dissipation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transport of macromolecules, such as low-density lipoprotein (LDL), and their accumulation in the layers of the arterial wall play a critical role in the creation and development of atherosclerosis. Atherosclerosis is a disease of large arteries e.g., the aorta, coronary, carotid, and other proximal arteries that involves a distinctive accumulation of LDL and other lipid-bearing materials in the arterial wall. Over time, plaque hardens and narrows the arteries. The flow of oxygen-rich blood to organs and other parts of the body is reduced. This can lead to serious problems, including heart attack, stroke, or even death. It has been proven that the accumulation of macromolecules in the arterial wall depends not only on the ease with which materials enter the wall, but also on the hindrance to the passage of materials out of the wall posed by underlying layers. Therefore, attention was drawn to the fact that the wall structure of large arteries is different than other vessels which are disease-resistant. Atherosclerosis tends to be localized in regions of curvature and branching in arteries where fluid shear stress (shear rate) and other fluid mechanical characteristics deviate from their normal spatial and temporal distribution patterns in straight vessels. On the other hand, the smooth muscle cells (SMCs) residing in the media layer of the arterial wall respond to mechanical stimuli, such as shear stress. Shear stress may affect SMC proliferation and migration from the media layer to intima. This occurs in atherosclerosis and intimal hyperplasia. The study of blood flow and other body fluids and of heat transport through the arterial wall is one of the advanced applications of porous media in recent years. The arterial wall may be modeled in both macroscopic (as a continuous porous medium) and microscopic scales (as a heterogeneous porous medium). In the present study, the governing equations of mass, heat and momentum transport have been solved for different species and interstitial fluid within the arterial wall by means of computational fluid dynamics (CFD). Simulation models are based on the finite element (FE) and finite volume (FV) methods. The wall structure has been modeled by assuming the wall layers as porous media with different properties. In order to study the heat transport through human tissues, the simulations have been carried out for a non-homogeneous model of porous media. The tissue is composed of blood vessels, cells, and an interstitium. The interstitium consists of interstitial fluid and extracellular fibers. Numerical simulations are performed in a two-dimensional (2D) model to realize the effect of the shape and configuration of the discrete phase on the convective and conductive features of heat transfer, e.g. the interstitium of biological tissues. On the other hand, the governing equations of momentum and mass transport have been solved in the heterogeneous porous media model of the media layer, which has a major role in the transport and accumulation of solutes across the arterial wall. The transport of Adenosine 5´-triphosphate (ATP) is simulated across the media layer as a benchmark to observe how SMCs affect on the species mass transport. In addition, the transport of interstitial fluid has been simulated while the deformation of the media layer (due to high blood pressure) and its constituents such as SMCs are also involved in the model. In this context, the effect of pressure variation on shear stress is investigated over SMCs induced by the interstitial flow both in 2D and three-dimensional (3D) geometries for the media layer. The influence of hypertension (high pressure) on the transport of lowdensity lipoprotein (LDL) through deformable arterial wall layers is also studied. This is due to the pressure-driven convective flow across the arterial wall. The intima and media layers are assumed as homogeneous porous media. The results of the present study reveal that ATP concentration over the surface of SMCs and within the bulk of the media layer is significantly dependent on the distribution of cells. Moreover, the shear stress magnitude and distribution over the SMC surface are affected by transmural pressure and the deformation of the media layer of the aorta wall. This work reflects the fact that the second or even subsequent layers of SMCs may bear shear stresses of the same order of magnitude as the first layer does if cells are arranged in an arbitrary manner. This study has brought new insights into the simulation of the arterial wall, as the previous simplifications have been ignored. The configurations of SMCs used here with elliptic cross sections of SMCs closely resemble the physiological conditions of cells. Moreover, the deformation of SMCs with high transmural pressure which follows the media layer compaction has been studied for the first time. On the other hand, results demonstrate that LDL concentration through the intima and media layers changes significantly as wall layers compress with transmural pressure. It was also noticed that the fraction of leaky junctions across the endothelial cells and the area fraction of fenestral pores over the internal elastic lamina affect the LDL distribution dramatically through the thoracic aorta wall. The simulation techniques introduced in this work can also trigger new ideas for simulating porous media involved in any biomedical, biomechanical, chemical, and environmental engineering applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis the structure and properties of imprecise quantum measurements are investigated. The starting point for this investigation is the representation of a quantum observable as a normalized positive operator measure. A general framework to describe measurement inaccuracy is presented. Requirements for accurate measurements are discussed, and the relation of inaccuracy to some optimality criteria is studied. A characterization of covariant observables is given in the case when they are imprecise versions of a sharp observable. Also the properties of such observables are studied. The case of position and momentum observables is studied. All position and momentum observables are characterized, and the joint positionmomentum measurements are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis gathers knowledge about ongoing high-temperature reactor projects around the world. Methods for calculating coolant flow and heat transfer inside a pebble-bed reactor core are also developed. The thesis begins with the introduction of high-temperature reactors including the current state of the technology. Process heat applications that could use the heat from a high-temperature reactor are also introduced. A suitable reactor design with data available in literature is selected for the calculation part of the thesis. Commercial computational fluid dynamics software Fluent is used for the calculations. The pebble-bed is approximated as a packed-bed, which causes sink terms to the momentum equations of the gas flowing through it. A position dependent value is used for the packing fraction. Two different models are used to calculate heat transfer. First a local thermal equilibrium is assumed between the gas and solid phases and a single energy equation is used. In the second approach, separate energy equations are used for the phases. Information about steady state flow behavior, pressure loss, and temperature distribution in the core is obtained as results of the calculations. The effect of inlet mass flow rate to pressure loss is also investigated. Data found in literature and the results correspond each other quite well, considered the amount of simplifications in the calculations. The models developed in this thesis can be used to solve coolant flow and heat transfer in a pebble-bed reactor, although additional development and model validation is needed for better accuracy and reliability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tutkielman tavoitteena on testata kvantitatiivisen osakepisteytysmallin tehokkuutta Euroopan osakemarkkinoilla. Osakepisteytysmalli järjestää osakkeet paremmuusjärjestykseen yrityskohtaisten tunnuslukujen avulla. Pisteytysmallin suositusten mukaan luodaan testisalkku ajanjaksolta 2002 2007. Testisalkun tuottoa mitataan pääomahyödykkeiden hinnoittelumallin sekä Faman ja Frenchin kolmen faktorin mallin avulla. Testisalkkua testataan markkina arvopainoisena sekä tasapainoisena. Tasapainoisessa salkussa jokaista osaketta painotetaan yhtäläisesti. Testisalkun rinnalle luodaan lisäksi vertailusalkku satunnaisista osakkeista. Tasapainotettu testisalkku tuotti tarkasteluajanjaksolla tilastollisesti merkitsevää markkinariskikorjattua ylituottoa 0,7 prosenttia kuukaudessa. Kolmen faktorin mallin avulla laskettu ylituotto ei ollut merkitsevä. Yrityskokofaktori sekä markkinatuotto näyttivät selittävän vahvasti testisalkun tuottoja. Yrityskoon vaikutus näkyi myös markkina arvopainotetussa salkussa, jonka tuotto ei päihittänyt markkinatuottoa. Vertailusalkku ei tuottanut tilastollisesti merkitsevää ylituottoa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The global demand for palm oil is growing, thus prompting an increase in the global production particularly in Malaysia and Indonesia. Such increasing demand for palm oil is due to palm oil’s relatively cheap price and versatile advantage both in edible and non-edible applications. Along with the increasing demand for palm oil, particularly for the production of biofuel, is a heated debate on its sustainability. Ecological degradation, climate change and social issues are among the main sustainability issues pressing the whole palm oil industry today. Clean Development Mechanism (CDM) projects fulfilling the imperatives of the Kyoto Protocol are starting to gain momentum in Malaysia as reflected by the increasing registration of CDM projects in the palm oil mills. Most CDM projects in palm oil mills are on waste-to-energy, cocomposting, and methane recovery with the latter being the most common. The study on greenhouse gases (GHG) in the milling process points that biogas collection and energy utilisation has the greatest positive effect on GHG balance. On the other hand, empty fruit bunches (EFB) end-use as energy and high energy efficiency of the mill have the least effect on GHG balance of the mill. The range of direct GHG emissions from the palm oil mill is from 2.5 to 27 gCO2e/MJCPO, while the range of GHG emissions with all indirect and avoided emissions included is from -9 to 29 gCO2e/MJCPO. Comparing this GHG balance result with that of the EU RES-Directive suggests a further check on the values and emissions consideration of the latter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A systematic averaging procedure has been derived in order to obtain an integral form of conservation equations for dispersed multiphase flow, especially applicable to fluidized beds. A similar averaging method is applied further to formulate macroscopic integral equations, which can be used in one-dimensional and macroscopic multi dimensional models. Circulating fluid bed hydrodynamics has been studied experimentally and both macroscopic and microscopic flow profiles have been measured in a cold model. As an application of the theory, the one dimensional model has been used to study mass and momentum conservation of gas and solid in a circulating fluid bed. Axial solid mixing has also been modelled by the one dimensional model and mixing parameters have been evaluated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transitional flow past a three-dimensional circular cylinder is a widely studied phenomenon since this problem is of interest with respect to many technical applications. In the present work, the numerical simulation of flow past a circular cylinder, performed by using a commercial CFD code (ANSYS Fluent 12.1) with large eddy simulation (LES) and RANS (κ - ε and Shear-Stress Transport (SST) κ - ω! model) approaches. The turbulent flow for ReD = 1000 & 3900 is simulated to investigate the force coefficient, Strouhal number, flow separation angle, pressure distribution on cylinder and the complex three dimensional vortex shedding of the cylinder wake region. The numerical results extracted from these simulations have good agreement with the experimental data (Zdravkovich, 1997). Moreover, grid refinement and time-step influence have been examined. Numerical calculations of turbulent cross-flow in a staggered tube bundle continues to attract interest due to its importance in the engineering application as well as the fact that this complex flow represents a challenging problem for CFD. In the present work a time dependent simulation using κ – ε, κ - ω! and SST models are performed in two dimensional for a subcritical flow through a staggered tube bundle. The predicted turbulence statistics (mean and r.m.s velocities) have good agreement with the experimental data (S. Balabani, 1996). Turbulent quantities such as turbulent kinetic energy and dissipation rate are predicted using RANS models and compared with each other. The sensitivity of grid and time-step size have been analyzed. Model constants sensitivity study have been carried out by adopting κ – ε model. It has been observed that model constants are very sensitive to turbulence statistics and turbulent quantities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis considers modeling and analysis of noise and interconnects in onchip communication. Besides transistor count and speed, the capabilities of a modern design are often limited by on-chip communication links. These links typically consist of multiple interconnects that run parallel to each other for long distances between functional or memory blocks. Due to the scaling of technology, the interconnects have considerable electrical parasitics that affect their performance, power dissipation and signal integrity. Furthermore, because of electromagnetic coupling, the interconnects in the link need to be considered as an interacting group instead of as isolated signal paths. There is a need for accurate and computationally effective models in the early stages of the chip design process to assess or optimize issues affecting these interconnects. For this purpose, a set of analytical models is developed for on-chip data links in this thesis. First, a model is proposed for modeling crosstalk and intersymbol interference. The model takes into account the effects of inductance, initial states and bit sequences. Intersymbol interference is shown to affect crosstalk voltage and propagation delay depending on bus throughput and the amount of inductance. Next, a model is proposed for the switching current of a coupled bus. The model is combined with an existing model to evaluate power supply noise. The model is then applied to reduce both functional crosstalk and power supply noise caused by a bus as a trade-off with time. The proposed reduction method is shown to be effective in reducing long-range crosstalk noise. The effects of process variation on encoded signaling are then modeled. In encoded signaling, the input signals to a bus are encoded using additional signaling circuitry. The proposed model includes variation in both the signaling circuitry and in the wires to calculate the total delay variation of a bus. The model is applied to study level-encoded dual-rail and 1-of-4 signaling. In addition to regular voltage-mode and encoded voltage-mode signaling, current-mode signaling is a promising technique for global communication. A model for energy dissipation in RLC current-mode signaling is proposed in the thesis. The energy is derived separately for the driver, wire and receiver termination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As technology geometries have shrunk to the deep submicron regime, the communication delay and power consumption of global interconnections in high performance Multi- Processor Systems-on-Chip (MPSoCs) are becoming a major bottleneck. The Network-on- Chip (NoC) architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication issues such as performance limitations of long interconnects and integration of large number of Processing Elements (PEs) on a chip. The choice of routing protocol and NoC structure can have a significant impact on performance and power consumption in on-chip networks. In addition, building a high performance, area and energy efficient on-chip network for multicore architectures requires a novel on-chip router allowing a larger network to be integrated on a single die with reduced power consumption. On top of that, network interfaces are employed to decouple computation resources from communication resources, to provide the synchronization between them, and to achieve backward compatibility with existing IP cores. Three adaptive routing algorithms are presented as a part of this thesis. The first presented routing protocol is a congestion-aware adaptive routing algorithm for 2D mesh NoCs which does not support multicast (one-to-many) traffic while the other two protocols are adaptive routing models supporting both unicast (one-to-one) and multicast traffic. A streamlined on-chip router architecture is also presented for avoiding congested areas in 2D mesh NoCs via employing efficient input and output selection. The output selection utilizes an adaptive routing algorithm based on the congestion condition of neighboring routers while the input selection allows packets to be serviced from each input port according to its congestion level. Moreover, in order to increase memory parallelism and bring compatibility with existing IP cores in network-based multiprocessor architectures, adaptive network interface architectures are presented to use multiple SDRAMs which can be accessed simultaneously. In addition, a smart memory controller is integrated in the adaptive network interface to improve the memory utilization and reduce both memory and network latencies. Three Dimensional Integrated Circuits (3D ICs) have been emerging as a viable candidate to achieve better performance and package density as compared to traditional 2D ICs. In addition, combining the benefits of 3D IC and NoC schemes provides a significant performance gain for 3D architectures. In recent years, inter-layer communication across multiple stacked layers (vertical channel) has attracted a lot of interest. In this thesis, a novel adaptive pipeline bus structure is proposed for inter-layer communication to improve the performance by reducing the delay and complexity of traditional bus arbitration. In addition, two mesh-based topologies for 3D architectures are also introduced to mitigate the inter-layer footprint and power dissipation on each layer with a small performance penalty.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For decades researchers have been trying to build models that would help understand price performance in financial markets and, therefore, to be able to forecast future prices. However, any econometric approaches have notoriously failed in predicting extreme events in markets. At the end of 20th century, market specialists started to admit that the reasons for economy meltdowns may originate as much in rational actions of traders as in human psychology. The latter forces have been described as trading biases, also known as animal spirits. This study aims at expressing in mathematical form some of the basic trading biases as well as the idea of market momentum and, therefore, reconstructing the dynamics of prices in financial markets. It is proposed through a novel family of models originating in population and fluid dynamics, applied to an electricity spot price time series. The main goal of this work is to investigate via numerical solutions how well theequations succeed in reproducing the real market time series properties, especially those that seemingly contradict standard assumptions of neoclassical economic theory, in particular the Efficient Market Hypothesis. The results show that the proposed model is able to generate price realizations that closely reproduce the behaviour and statistics of the original electricity spot price. That is achieved in all price levels, from small and medium-range variations to price spikes. The latter were generated from price dynamics and market momentum, without superimposing jump processes in the model. In the light of the presented results, it seems that the latest assumptions about human psychology and market momentum ruling market dynamics may be true. Therefore, other commodity markets should be analyzed with this model as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis traditional investment strategies (value and growth) are compared to modern investment strategies (momentum, contrarian and GARP) in terms of risk, performance and cumulative returns. Strategies are compared during time period reaching from 1996 to 2010 in the Finnish stock market. Used data includes all listed main list stocks, dividends and is adjusted in case of splits, and mergers and acquisitions. Strategies are tested using different holding periods (6, 12 and 36 months) and data is divided into tercile portfolios based on different ranking criteria. Contrarian and growth strategies are the only strategies with improved cumulative returns when longer holding periods are used. Momentum (52-week high price1) and GARP strategies based on short holding period have the best performance and contrarian and growth strategies the worst. Momentum strategies (52-week high price) along with short holding period contrarian strategies (52-week low price2) have the lowest risk. Strategies with the highest risk are both growth strategies and two momentum strategies (52-week low price). The empirical results support the efficiency of momentum, GARP and value strategies. The least efficient strategies are contrarian and growth strategies in terms of risk, performance and cumulative returns. Most strategies outperform the market portfolio in all three measures. 1 Stock ranking criterion (current price/52-week highest price) 2 Stock ranking criterion (current price/52-week lowest price)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis addresses the use of covariant phase space observables in quantum tomography. Necessary and sufficient conditions for the informational completeness of covariant phase space observables are proved, and some state reconstruction formulae are derived. Different measurement schemes for measuring phase space observables are considered. Special emphasis is given to the quantum optical eight-port homodyne detection scheme and, in particular, on the effect of non-unit detector efficiencies on the measured observable. It is shown that the informational completeness of the observable does not depend on the efficiencies. As a related problem, the possibility of reconstructing the position and momentum distributions from the marginal statistics of a phase space observable is considered. It is shown that informational completeness for the phase space observable is neither necessary nor sufficient for this procedure. Two methods for determining the distributions from the marginal statistics are presented. Finally, two alternative methods for determining the state are considered. Some of their shortcomings when compared to the phase space method are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this thesis is to examine whether the pricing anomalies exists in the Finnish stock markets by comparing the performance of quantile portfolios that are formed on the basis of either individual valuation ratios, composite value measures or combined value and momentum indicators. All the research papers included in the thesis show evidence of value anomalies in the Finnish stock markets. In the first paper, the sample of stocks over the 1991-2006 period is divided into quintile portfolios based on four individual valuation ratios (i.e., E/P, EBITDA/EV, B/P, and S/P) and three hybrids of them (i.e. composite value measures). The results show the superiority of composite value measures as selection criterion for value stocks, particularly when EBITDA/EV is employed as earnings multiple. The main focus of the second paper is on the impact of the holding period length on performance of value strategies. As an extension to the first paper, two more individual ratios (i.e. CF/P and D/P) are included in the comparative analysis. The sample of stocks over 1993- 2008 period is divided into tercile portfolios based on six individual valuation ratios and three hybrids of them. The use of either dividend yield criterion or one of three composite value measures being examined results in best value portfolio performance according to all performance metrics used. Parallel to the findings of many international studies, our results from performance comparisons indicate that for the sample data employed, the yearly reformation of portfolios is not necessarily optimal in order to maximally gain from the value premium. Instead, the value investor may extend his holding period up to 5 years without any decrease in long-term portfolio performance. The same holds also for the results of the third paper that examines the applicability of data envelopment analysis (DEA) method in discriminating the undervalued stocks from overvalued ones. The fourth paper examines the added value of combining price momentum with various value strategies. Taking account of the price momentum improves the performance of value portfolios in most cases. The performance improvement is greatest for value portfolios that are formed on the basis of the 3-composite value measure which consists of D/P, B/P and EBITDA/EV ratios. The risk-adjusted performance can be enhanced further by following 130/30 long-short strategy in which the long position of value winner stocks is leveraged by 30 percentages while simultaneously selling short glamour loser stocks by the same amount. Average return of the long-short position proved to be more than double stock market average coupled with the volatility decrease. The fifth paper offers a new approach to combine value and momentum indicators into a single portfolio-formation criterion using different variants of DEA models. The results throughout the 1994-2010 sample period shows that the top-tercile portfolios outperform both the market portfolio and the corresponding bottom-tercile portfolios. In addition, the middle-tercile portfolios also outperform the comparable bottom-tercile portfolios when DEA models are used as a basis for stock classification criteria. To my knowledge, such strong performance differences have not been reported in earlier peer-reviewed studies that have employed the comparable quantile approach of dividing stocks into portfolios. Consistently with the previous literature, the division of the full sample period into bullish and bearish periods reveals that the top-quantile DEA portfolios lose far less of their value during the bearish conditions than do the corresponding bottom portfolios. The sixth paper extends the sample period employed in the fourth paper by one year (i.e. 1993- 2009) covering also the first years of the recent financial crisis. It contributes to the fourth paper by examining the impact of the stock market conditions on the main results. Consistently with the fifth paper, value portfolios lose much less of their value during bearish conditions than do stocks on average. The inclusion of a momentum criterion somewhat adds value to an investor during bullish conditions, but this added value turns to negative during bearish conditions. During bear market periods some of the value loser portfolios perform even better than their value winner counterparts. Furthermore, the results show that the recent financial crisis has reduced the added value of using combinations of momentum and value indicators as portfolio formation criteria. However, since the stock markets have historically been bullish more often than bearish, the combination of the value and momentum criteria has paid off to the investor despite the fact that its added value during bearish periods is negative, on an average.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Työssä selvitetään kiertolaskennan periaatteita kuplapetikattilassa, esitetään lyhyesti kattilan toimintaperiaate ja paneudutaan alan laskentaohjelmistoihin. Luonnonkierto kattilan vesihöyrypiirissä on seurausta hydrostaattisesta paineesta, joka aiheutuu tiheyserosta nousu- ja laskuputkien välillä. Kiertolaskennassa on huomioitava kaksifaasivirtauksen ominaispiirteet. Höyry ja neste virtaavat putkistossa eri nopeuksilla, jolloin esimerkiksi painehäviön määrityksessä käytetään erilaisia korrelaatioita ja käyrästöjä. Kaksifaasivirtauksen laskennassa tarvitaan kolmea eri taseyhtälöä: energiatasetta, massatasetta ja liikemäärätasetta. Luonnonkiertokattiloissa höyrykierron suunnittelussa on kaksi pääasiallista ehtoa. Ensimmäiseksi tulee varmistaa riittävä kiertoveden massavirta, jotta vältetään höyrystinputkien puhki palaminen. Toiseksi tulee välttää höyrystinputken pinnan lämpötilavaihteluita ja värähtelyitä. Alustavassa luonnonkierron mitoituksessa turvaudutaan kokemusperäiseen tietoon. Myöhemmässä tarkemmassa mitoituksessa käytettäviä ohjelmistoja ovat NOWA sekä kaupalliset PPSD ja Apros. Laskenta lähtee liikkeelle siitä, että lasketaan ensin vesihöyrykierron massavirrat erilaisilla lämpökuormilla ja höyryntuotanto määritellään painehäviöiden perusteella. NOWA- ja PPSD- ohjelmistoilla tehtyjen esimerkkilaskelmien perusteella voidaan sanoa, että tulokset riippuvat käytetystä laskentamallista.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lanthanum lutetium oxide (LaLuO3) thin films were investigated considering their perspective application for industrial microelectronics. Scanning probe microscopy (SPM) techniques permitted to visualize the surface topography and study the electric properties. This work compared both the material properties (charge behavior for samples of 6 nm and 25 nm width) and the applied SPM modes. Particularly, Kelvin probe force microscopy (KPFM) was applied to characterize local potential difference with high lateral resolution. Measurements showed the difference in morphology, chargeability and charge dissipation time for both samples. The polarity effect was detected for this material for the first time. Lateral spreading of the charged spots indicate the diffusive mechanism to be predominant in charge dissipation. This allowed to estimate the diffusion coefficient and mobility. Using simple electrostatic model it was found that charge is partly leaking into the interface oxide layer.