38 resultados para Particle Tracking
Resumo:
Since the times preceding the Second World War the subject of aircraft tracking has been a core interest to both military and non-military aviation. During subsequent years both technology and configuration of the radars allowed the users to deploy it in numerous fields, such as over-the-horizon radar, ballistic missile early warning systems or forward scatter fences. The latter one was arranged in a bistatic configuration. The bistatic radar has continuously re-emerged over the last eighty years for its intriguing capabilities and challenging configuration and formulation. The bistatic radar arrangement is used as the basis of all the analyzes presented in this work. The aircraft tracking method of VHF Doppler-only information, developed in the first part of this study, is solely based on Doppler frequency readings in relation to time instances of their appearance. The corresponding inverse problem is solved by utilising a multistatic radar scenario with two receivers and one transmitter and using their frequency readings as a base for aircraft trajectory estimation. The quality of the resulting trajectory is then compared with ground-truth information based on ADS-B data. The second part of the study deals with the developement of a method for instantaneous Doppler curve extraction from within a VHF time-frequency representation of the transmitted signal, with a three receivers and one transmitter configuration, based on a priori knowledge of the probability density function of the first order derivative of the Doppler shift, and on a system of blocks for identifying, classifying and predicting the Doppler signal. The extraction capabilities of this set-up are tested with a recorded TV signal and simulated synthetic spectrograms. Further analyzes are devoted to more comprehensive testing of the capabilities of the extraction method. Besides testing the method, the classification of aircraft is performed on the extracted Bistatic Radar Cross Section profiles and the correlation between them for different types of aircraft. In order to properly estimate the profiles, the ADS-B aircraft location information is adjusted based on extracted Doppler frequency and then used for Bistatic Radar Cross Section estimation. The classification is based on seven types of aircraft grouped by their size into three classes.
Resumo:
The aim of this thesis is to propose a novel control method for teleoperated electrohydraulic servo systems that implements a reliable haptic sense between the human and manipulator interaction, and an ideal position control between the manipulator and the task environment interaction. The proposed method has the characteristics of a universal technique independent of the actual control algorithm and it can be applied with other suitable control methods as a real-time control strategy. The motivation to develop this control method is the necessity for a reliable real-time controller for teleoperated electrohydraulic servo systems that provides highly accurate position control based on joystick inputs with haptic capabilities. The contribution of the research is that the proposed control method combines a directed random search method and a real-time simulation to develop an intelligent controller in which each generation of parameters is tested on-line by the real-time simulator before being applied to the real process. The controller was evaluated on a hydraulic position servo system. The simulator of the hydraulic system was built based on Markov chain Monte Carlo (MCMC) method. A Particle Swarm Optimization algorithm combined with the foraging behavior of E. coli bacteria was utilized as the directed random search engine. The control strategy allows the operator to be plugged into the work environment dynamically and kinetically. This helps to ensure the system has haptic sense with high stability, without abstracting away the dynamics of the hydraulic system. The new control algorithm provides asymptotically exact tracking of both, the position and the contact force. In addition, this research proposes a novel method for re-calibration of multi-axis force/torque sensors. The method makes several improvements to traditional methods. It can be used without dismantling the sensor from its application and it requires smaller number of standard loads for calibration. It is also more cost efficient and faster in comparison to traditional calibration methods. The proposed method was developed in response to re-calibration issues with the force sensors utilized in teleoperated systems. The new approach aimed to avoid dismantling of the sensors from their applications for applying calibration. A major complication with many manipulators is the difficulty accessing them when they operate inside a non-accessible environment; especially if those environments are harsh; such as in radioactive areas. The proposed technique is based on design of experiment methodology. It has been successfully applied to different force/torque sensors and this research presents experimental validation of use of the calibration method with one of the force sensors which method has been applied to.
Resumo:
Many industrial applications need object recognition and tracking capabilities. The algorithms developed for those purposes are computationally expensive. Yet ,real time performance, high accuracy and small power consumption are essential measures of the system. When all these requirements are combined, hardware acceleration of these algorithms becomes a feasible solution. The purpose of this study is to analyze the current state of these hardware acceleration solutions, which algorithms have been implemented in hardware and what modifications have been done in order to adapt these algorithms to hardware.
Resumo:
In this paper, we review the advances of monocular model-based tracking for last ten years period until 2014. In 2005, Lepetit, et. al, [19] reviewed the status of monocular model based rigid body tracking. Since then, direct 3D tracking has become quite popular research area, but monocular model-based tracking should still not be forgotten. We mainly focus on tracking, which could be applied to aug- mented reality, but also some other applications are covered. Given the wide subject area this paper tries to give a broad view on the research that has been conducted, giving the reader an introduction to the different disciplines that are tightly related to model-based tracking. The work has been conducted by searching through well known academic search databases in a systematic manner, and by selecting certain publications for closer examination. We analyze the results by dividing the found papers into different categories by their way of implementation. The issues which have not yet been solved are discussed. We also discuss on emerging model-based methods such as fusing different types of features and region-based pose estimation which could show the way for future research in this subject.
Resumo:
Syksy Räsänen's presentation at Kirjastoverkkopäivät, Helsinki 21.10.2015.
Stochastic particle models: mean reversion and burgers dynamics. An application to commodity markets
Resumo:
The aim of this study is to propose a stochastic model for commodity markets linked with the Burgers equation from fluid dynamics. We construct a stochastic particles method for commodity markets, in which particles represent market participants. A discontinuity in the model is included through an interacting kernel equal to the Heaviside function and its link with the Burgers equation is given. The Burgers equation and the connection of this model with stochastic differential equations are also studied. Further, based on the law of large numbers, we prove the convergence, for large N, of a system of stochastic differential equations describing the evolution of the prices of N traders to a deterministic partial differential equation of Burgers type. Numerical experiments highlight the success of the new proposal in modeling some commodity markets, and this is confirmed by the ability of the model to reproduce price spikes when their effects occur in a sufficiently long period of time.
Resumo:
Celebrity endorsement has increased in popularity over the past decades and companies are willing to spend increasingly excessive amounts of money into it. Even though multiple studies support celebrity endorsement, further research on its impact on advertising effectiveness is called for. Fur-ther, the role of consumers’ product class involvement in advertising needs to be further studied. The purpose of this study is to explore if consumers’ product class involvement and exposure to celebrity endorsers affect consumers brand recall. Supported by earlier studies, brand recall was used as a measure for advertising effectiveness in this study. In general, a psychological approach was chosen for building the theoretical framework. Concept of classical conditioning was presented in order to understand why people act how they do. Balanced theory and meaning transfer model were presented in order to study how celebrities can be used effectively in advertising context. Further, the importance of product class involvement in advertising effectiveness was evaluated. Hypotheses were formulated based on a literature review of the existing research. Because of the versatility of the research design, a mixed methods approach for this study was adopted. Empirical part of the study was conducted in three stages. First, a pre-test was conducted in order to choose suitable product endorsers for the advertisement stimuli used in the experiment. Second, an eye-tracking experiment with 30 test subjects was conducted in order to study how people view advertisements and whether the familiarity of the product endorser and consumers’ product class involvement affects brand recall. For the experiment, a fictional brand was created in order to avoid bias on brand recall. Third, qualitative interviews for 15 test subjects were conducted in the post-experiment stage in order to gain deeper understating of the phenomenon and to make sense of the findings from the experiment. Findings from this study support celebrity endorsement by suggesting that a famous spokesperson does not steal attention from brand information more than a non-celebrity product endorser. As a result, the use of a celebrity endorser did not decrease brand recall. Results support earlier research as consumer’ higher product class involvement resulted in a better brand recall. Findings from the interviews suggest that consumers have positive perceptions of celebrity endorsement in general. However, the celebrity–brand congruence is a crucial factor when creating attitudes towards the advertisement. Future research ideas were presented based on the limitations and results of this study