76 resultados para Computational tools


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machine learning provides tools for automated construction of predictive models in data intensive areas of engineering and science. The family of regularized kernel methods have in the recent years become one of the mainstream approaches to machine learning, due to a number of advantages the methods share. The approach provides theoretically well-founded solutions to the problems of under- and overfitting, allows learning from structured data, and has been empirically demonstrated to yield high predictive performance on a wide range of application domains. Historically, the problems of classification and regression have gained the majority of attention in the field. In this thesis we focus on another type of learning problem, that of learning to rank. In learning to rank, the aim is from a set of past observations to learn a ranking function that can order new objects according to how well they match some underlying criterion of goodness. As an important special case of the setting, we can recover the bipartite ranking problem, corresponding to maximizing the area under the ROC curve (AUC) in binary classification. Ranking applications appear in a large variety of settings, examples encountered in this thesis include document retrieval in web search, recommender systems, information extraction and automated parsing of natural language. We consider the pairwise approach to learning to rank, where ranking models are learned by minimizing the expected probability of ranking any two randomly drawn test examples incorrectly. The development of computationally efficient kernel methods, based on this approach, has in the past proven to be challenging. Moreover, it is not clear what techniques for estimating the predictive performance of learned models are the most reliable in the ranking setting, and how the techniques can be implemented efficiently. The contributions of this thesis are as follows. First, we develop RankRLS, a computationally efficient kernel method for learning to rank, that is based on minimizing a regularized pairwise least-squares loss. In addition to training methods, we introduce a variety of algorithms for tasks such as model selection, multi-output learning, and cross-validation, based on computational shortcuts from matrix algebra. Second, we improve the fastest known training method for the linear version of the RankSVM algorithm, which is one of the most well established methods for learning to rank. Third, we study the combination of the empirical kernel map and reduced set approximation, which allows the large-scale training of kernel machines using linear solvers, and propose computationally efficient solutions to cross-validation when using the approach. Next, we explore the problem of reliable cross-validation when using AUC as a performance criterion, through an extensive simulation study. We demonstrate that the proposed leave-pair-out cross-validation approach leads to more reliable performance estimation than commonly used alternative approaches. Finally, we present a case study on applying machine learning to information extraction from biomedical literature, which combines several of the approaches considered in the thesis. The thesis is divided into two parts. Part I provides the background for the research work and summarizes the most central results, Part II consists of the five original research articles that are the main contribution of this thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to simulate blood flow in thoracic human aorta and understand the role of flow dynamics in the initialization and localization of atherosclerotic plaque in human thoracic aorta. The blood flow dynamics in idealized and realistic models of human thoracic aorta were numerically simulated in three idealized and two realistic thoracic aorta models. The idealized models of thoracic aorta were reconstructed with measurements available from literature, and the realistic models of thoracic aorta were constructed by image processing Computed Tomographic (CT) images. The CT images were made available by South Karelia Central Hospital in Lappeenranta. The reconstruction of thoracic aorta consisted of operations, such as contrast adjustment, image segmentations, and 3D surface rendering. Additional design operations were performed to make the aorta model compatible for the numerical method based computer code. The image processing and design operations were performed with specialized medical image processing software. Pulsatile pressure and velocity boundary conditions were deployed as inlet boundary conditions. The blood flow was assumed homogeneous and incompressible. The blood was assumed to be a Newtonian fluid. The simulations with idealized models of thoracic aorta were carried out with Finite Element Method based computer code, while the simulations with realistic models of thoracic aorta were carried out with Finite Volume Method based computer code. Simulations were carried out for four cardiac cycles. The distribution of flow, pressure and Wall Shear Stress (WSS) observed during the fourth cardiac cycle were extensively analyzed. The aim of carrying out the simulations with idealized model was to get an estimate of flow dynamics in a realistic aorta model. The motive behind the choice of three aorta models with distinct features was to understand the dependence of flow dynamics on aorta anatomy. Highly disturbed and nonuniform distribution of velocity and WSS was observed in aortic arch, near brachiocephalic, left common artery, and left subclavian artery. On the other hand, the WSS profiles at the roots of branches show significant differences with geometry variation of aorta and branches. The comparison of instantaneous WSS profiles revealed that the model with straight branching arteries had relatively lower WSS compared to that in the aorta model with curved branches. In addition to this, significant differences were observed in the spatial and temporal profiles of WSS, flow, and pressure. The study with idealized model was extended to study blood flow in thoracic aorta under the effects of hypertension and hypotension. One of the idealized aorta models was modified along with the boundary conditions to mimic the thoracic aorta under the effects of hypertension and hypotension. The results of simulations with realistic models extracted from CT scans demonstrated more realistic flow dynamics than that in the idealized models. During systole, the velocity in ascending aorta was skewed towards the outer wall of aortic arch. The flow develops secondary flow patterns as it moves downstream towards aortic arch. Unlike idealized models, the distribution of flow was nonplanar and heavily guided by the artery anatomy. Flow cavitation was observed in the aorta model which was imaged giving longer branches. This could not be properly observed in the model with imaging containing a shorter length for aortic branches. The flow circulation was also observed in the inner wall of the aortic arch. However, during the diastole, the flow profiles were almost flat and regular due the acceleration of flow at the inlet. The flow profiles were weakly turbulent during the flow reversal. The complex flow patterns caused a non-uniform distribution of WSS. High WSS was distributed at the junction of branches and aortic arch. Low WSS was distributed at the proximal part of the junction, while intermedium WSS was distributed in the distal part of the junction. The pulsatile nature of the inflow caused oscillating WSS at the branch entry region and inner curvature of aortic arch. Based on the WSS distribution in the realistic model, one of the aorta models was altered to induce artificial atherosclerotic plaque at the branch entry region and inner curvature of aortic arch. Atherosclerotic plaque causing 50% blockage of lumen was introduced in brachiocephalic artery, common carotid artery, left subclavian artery, and aortic arch. The aim of this part of the study was first to study the effect of stenosis on flow and WSS distribution, understand the effect of shape of atherosclerotic plaque on flow and WSS distribution, and finally to investigate the effect of lumen blockage severity on flow and WSS distributions. The results revealed that the distribution of WSS is significantly affected by plaque with mere 50% stenosis. The asymmetric shape of stenosis causes higher WSS in branching arteries than in the cases with symmetric plaque. The flow dynamics within thoracic aorta models has been extensively studied and reported here. The effects of pressure and arterial anatomy on the flow dynamic were investigated. The distribution of complex flow and WSS is correlated with the localization of atherosclerosis. With the available results we can conclude that the thoracic aorta, with complex anatomy is the most vulnerable artery for the localization and development of atherosclerosis. The flow dynamics and arterial anatomy play a role in the localization of atherosclerosis. The patient specific image based models can be used to diagnose the locations in the aorta vulnerable to the development of arterial diseases such as atherosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tämä taktiikan tutkimus keskittyy tietokoneavusteisen simuloinnin laskennallisiin menetelmiin, joita voidaan käyttää taktisen tason sotapeleissä. Työn tärkeimmät tuotokset ovat laskennalliset mallit todennäköisyyspohjaisen analyysin mahdollistaviin taktisen tason taistelusimulaattoreihin, joita voidaan käyttää vertailevaan analyysiin joukkue-prikaatitason tarkastelutilanteissa. Laskentamallit keskittyvät vaikuttamiseen. Mallit liittyvät vahingoittavan osuman todennäköisyyteen, jonka perusteella vaikutus joukossa on mallinnettu tilakoneina ja Markovin ketjuina. Edelleen näiden tulokset siirretään tapahtumapuuanalyysiin operaation onnistumisen todennäköisyyden osalta. Pienimmän laskentayksikön mallinnustaso on joukkue- tai ryhmätasolla, jotta laskenta-aika prikaatitason sotapelitarkasteluissa pysyisi riittävän lyhyenä samalla, kun tulokset ovat riittävän tarkkoja suomalaiseen maastoon. Joukkueiden mies- ja asejärjestelmävahvuudet ovat jakaumamuodossa, eivätkä yksittäisiä lukuja. Simuloinnin integroinnissa voidaan käyttää asejärjestelmäkohtaisia predictor corrector –parametreja, mikä mahdollistaa aika-askelta lyhytaikaisempien taistelukentän ilmiöiden mallintamisen. Asemallien pohjana ovat aiemmat tutkimukset ja kenttäkokeet, joista osa kuuluu tähän väitöstutkimukseen. Laskentamallien ohjelmoitavuus ja käytettävyys osana simulointityökalua on osoitettu tekijän johtaman tutkijaryhmän ohjelmoiman ”Sandis”- taistelusimulointiohjelmiston avulla, jota on kehitetty ja käytetty Puolustusvoimien Teknillisessä Tutkimuslaitoksessa. Sandikseen on ohjelmoitu karttakäyttöliittymä ja taistelun kulkua simuloivia laskennallisia malleja. Käyttäjä tai käyttäjäryhmä tekee taktiset päätökset ja syöttää nämä karttakäyttöliittymän avulla simulointiin, jonka tuloksena saadaan kunkin joukkuetason peliyksikön tappioiden jakauma, keskimääräisten tappioiden osalta kunkin asejärjestelmän aiheuttamat tappiot kuhunkin maaliin, ammuskulutus ja radioyhteydet ja niiden tila sekä haavoittuneiden evakuointi-tilanne joukkuetasolta evakuointisairaalaan asti. Tutkimuksen keskeisiä tuloksia (kontribuutio) ovat 1) uusi prikaatitason sotapelitilanteiden laskentamalli, jonka pienin yksikkö on joukkue tai ryhmä; 2) joukon murtumispisteen määritys tappioiden ja haavoittuneiden evakuointiin sitoutuvien taistelijoiden avulla; 3) todennäköisyyspohjaisen riskianalyysin käyttömahdollisuus vertailevassa tutkimuksessa sekä 4) kokeellisesti testatut tulen vaikutusmallit ja 5) toimivat integrointiratkaisut. Työ rajataan maavoimien taistelun joukkuetason todennäköisyysjakaumat luovaan laskentamalliin, kenttälääkinnän malliin ja epäsuoran tulen malliin integrointimenetelmineen sekä niiden antamien tulosten sovellettavuuteen. Ilmasta ja mereltä maahan -asevaikutusta voidaan tarkastella, mutta ei ilma- ja meritaistelua. Menetelmiä soveltavan Sandis -ohjelmiston malleja, käyttötapaa ja ohjelmistotekniikkaa kehitetään edelleen. Merkittäviä jatkotutkimuskohteita mallinnukseen osalta ovat muun muassa kaupunkitaistelu, vaunujen kaksintaistelu ja maaston vaikutus tykistön tuleen sekä materiaalikulutuksen arviointi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate-specific antigen (PSA) is a marker that is commonly used in estimating prostate cancer risk. Prostate cancer is usually a slowly progressing disease, which might not cause any symptoms whatsoever. Nevertheless, some cases of cancer are aggressive and need to be treated before they become life-threatening. However, the blood PSA concentration may rise also in benign prostate diseases and using a single total PSA (tPSA) measurement to guide the decision on further examinations leads to many unnecessary biopsies, over-detection, and overtreatment of indolent cancers which would not require treatment. Therefore, there is a need for markers that would better separate cancer from benign disorders, and would also predict cancer aggressiveness. The aim of this study was to evaluate whether intact and nicked forms of free PSA (fPSA-I and fPSA-N) or human kallikrein-related peptidase 2 (hK2) could serve as new tools in estimating prostate cancer risk. First, the immunoassays for fPSA-I and free and total hK2 were optimized so that they would be less prone to assay interference caused by interfering factors present in some blood samples. The optimized assays were shown to work well and were used to study the marker concentrations in the clinical sample panels. The marker levels were measured from preoperative blood samples of prostate cancer patients scheduled for radical prostatectomy. The association of the markers with the cancer stage and grade was studied. It was found that among all tested markers and their combinations especially the ratio of fPSA-N to tPSA and ratio of free PSA (fPSA) to tPSA were associated with both cancer stage and grade. They might be useful in predicting the cancer aggressiveness, but further follow-up studies are necessary to fully evaluate the significance of the markers in this clinical setting. The markers tPSA, fPSA, fPSA-I and hK2 were combined in a statistical model which was previously shown to be able to reduce unnecessary biopsies when applied to large screening cohorts of men with elevated tPSA. The discriminative accuracy of this model was compared to models based on established clinical predictors in reference to biopsy outcome. The kallikrein model and the calculated fPSA-N concentrations (fPSA minus fPSA-I) correlated with the prostate volume and the model, when compared to the clinical models, predicted prostate cancer in biopsy equally well. Hence, the measurement of kallikreins in a blood sample could be used to replace the volume measurement which is time-consuming, needs instrumentation and skilled personnel and is an uncomfortable procedure. Overall, the model could simplify the estimation of prostate cancer risk. Finally, as the fPSA-N seems to be an interesting new marker, a direct immunoassay for measuring fPSA-N concentrations was developed. The analytical performance was acceptable, but the rather complicated assay protocol needs to be improved until it can be used for measuring large sample panels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Innovation Union Scoreboard of 2011, Latvia ranked last amongst the EU countries in innovation performance. Even though there is sufficient scientific and technological basis, the results remain modest or low in most of the indicators concerning innovations. Several aspects influence the performance a national innovation system. In Latvia, the low effectiveness is often attributed to lack of financial support tools. As a comparison, Finland was chosen because of its well-established and documented innovation system. The aim of this study is to research the efficiency and effectiveness of the current financial innovation support tool system in Latvia from the point of view of an innovating company. It also attempts to analyze the support tool system of Latvia and compare to the relevant parts of the Finnish system. The study found that it is problematic for innovative companies in Latvia to receive the necessary funding especially for start-ups and SMEs due to the low number of grant programs, funds and lacking offer from banks, venture capital and business angels. To improve the situation, the Latvian government should restructure the funding mechanisms putting a bigger emphasis on innovative start-ups and SMEs. That would lay a foundation for future growth and boost research and scientific activities in Latvia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current research emphasizes on various questions raised and deliberated upon by different entrepreneurs. It provides a valuable contribution to comprehend the importance of social media and ICT-applications. Furthermore, it demonstrates how to support and implement the management consulting and business coaching start-ups with the help of social media and ICT-tools. The thesis presents a literary review from different information systems science, SME and e-business journals, web articles, as well as, survey analysis reports on social media applications. The methodology incorporated into a qualitative research method in which social anthropological approaches were used to oversee the case study activities in order to collect data. The collaborative social research approach was used to shelter the action research method. The research discovered that new business start-ups, as well as small businesses do not use social media and ICT-tools, unlike most of the large corporations use. At present, the current open-source ICT-technologies and social media applications are equally available for new and small businesses as they are available for larger companies. Successful implementation of social media and ICT-applications can easily enhance start-up performance and overcome business hassles. The thesis sheds some light on effective and innovative implementation of social media and ICT-applications for new business risk takers and small business birds. Key words

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this thesis is twofold. The first and major part is devoted to sensitivity analysis of various discrete optimization problems while the second part addresses methods applied for calculating measures of solution stability and solving multicriteria discrete optimization problems. Despite numerous approaches to stability analysis of discrete optimization problems two major directions can be single out: quantitative and qualitative. Qualitative sensitivity analysis is conducted for multicriteria discrete optimization problems with minisum, minimax and minimin partial criteria. The main results obtained here are necessary and sufficient conditions for different stability types of optimal solutions (or a set of optimal solutions) of the considered problems. Within the framework of quantitative direction various measures of solution stability are investigated. A formula for a quantitative characteristic called stability radius is obtained for the generalized equilibrium situation invariant to changes of game parameters in the case of the H¨older metric. Quality of the problem solution can also be described in terms of robustness analysis. In this work the concepts of accuracy and robustness tolerances are presented for a strategic game with a finite number of players where initial coefficients (costs) of linear payoff functions are subject to perturbations. Investigation of stability radius also aims to devise methods for its calculation. A new metaheuristic approach is derived for calculation of stability radius of an optimal solution to the shortest path problem. The main advantage of the developed method is that it can be potentially applicable for calculating stability radii of NP-hard problems. The last chapter of the thesis focuses on deriving innovative methods based on interactive optimization approach for solving multicriteria combinatorial optimization problems. The key idea of the proposed approach is to utilize a parameterized achievement scalarizing function for solution calculation and to direct interactive procedure by changing weighting coefficients of this function. In order to illustrate the introduced ideas a decision making process is simulated for three objective median location problem. The concepts, models, and ideas collected and analyzed in this thesis create a good and relevant grounds for developing more complicated and integrated models of postoptimal analysis and solving the most computationally challenging problems related to it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Technological developments in microprocessors and ICT landscape have made a shift to a new era where computing power is embedded in numerous small distributed objects and devices in our everyday lives. These small computing devices are ne-tuned to perform a particular task and are increasingly reaching our society at every level. For example, home appliances such as programmable washing machines, microwave ovens etc., employ several sensors to improve performance and convenience. Similarly, cars have on-board computers that use information from many di erent sensors to control things such as fuel injectors, spark plug etc., to perform their tasks e ciently. These individual devices make life easy by helping in taking decisions and removing the burden from their users. All these objects and devices obtain some piece of information about the physical environment. Each of these devices is an island with no proper connectivity and information sharing between each other. Sharing of information between these heterogeneous devices could enable a whole new universe of innovative and intelligent applications. The information sharing between the devices is a diffcult task due to the heterogeneity and interoperability of devices. Smart Space vision is to overcome these issues of heterogeneity and interoperability so that the devices can understand each other and utilize services of each other by information sharing. This enables innovative local mashup applications based on shared data between heterogeneous devices. Smart homes are one such example of Smart Spaces which facilitate to bring the health care system to the patient, by intelligent interconnection of resources and their collective behavior, as opposed to bringing the patient into the health system. In addition, the use of mobile handheld devices has risen at a tremendous rate during the last few years and they have become an essential part of everyday life. Mobile phones o er a wide range of different services to their users including text and multimedia messages, Internet, audio, video, email applications and most recently TV services. The interactive TV provides a variety of applications for the viewers. The combination of interactive TV and the Smart Spaces could give innovative applications that are personalized, context-aware, ubiquitous and intelligent by enabling heterogeneous systems to collaborate each other by sharing information between them. There are many challenges in designing the frameworks and application development tools for rapid and easy development of these applications. The research work presented in this thesis addresses these issues. The original publications presented in the second part of this thesis propose architectures and methodologies for interactive and context-aware applications, and tools for the development of these applications. We demonstrated the suitability of our ontology-driven application development tools and rule basedapproach for the development of dynamic, context-aware ubiquitous iTV applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is based on computational chemistry studies on lignans, focusing on the naturally occurring lignan hydroxymatairesinol (HMR) (Papers I II) and on TADDOL-like conidendrin-based chiral 1,4-diol ligands (LIGNOLs) (Papers III V). A complete quantum chemical conformational analysis on HMR was previously conducted by Dr. Antti Taskinen. In the works reported in this thesis, HMR was further studied by classical molecular dynamics (MD) simulations in aqueous solution including torsional angle analysis, quantum chemical solvation e ect study by the COnductorlike Screening MOdel (COSMO), and hydrogen bond analysis (Paper I), as well as from a catalytic point of view including protonation and deprotonation studies at di erent levels of theory (Paper II). The computational LIGNOL studies in this thesis constitute a multi-level deterministic structural optimization of the following molecules: 1,1-diphenyl (2Ph), two diastereomers of 1,1,4-triphenyl (3PhR, 3PhS), 1,1,4,4-tetraphenyl (4Ph) and 1,1,4,4-tetramethyl (4Met) 1,4-diol (Paper IV) and a conformational solvation study applying MD and COSMO (Paper V). Furthermore, a computational study on hemiketals in connection with problems in the experimental work by Docent Patrik Eklund's group synthesizing the LIGNOLs based on natural products starting from HMR, is shortly described (Paper III).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical analyses of measurements that can be described by statistical models are of essence in astronomy and in scientific inquiry in general. The sensitivity of such analyses, modelling approaches, and the consequent predictions, is sometimes highly dependent on the exact techniques applied, and improvements therein can result in significantly better understanding of the observed system of interest. Particularly, optimising the sensitivity of statistical techniques in detecting the faint signatures of low-mass planets orbiting the nearby stars is, together with improvements in instrumentation, essential in estimating the properties of the population of such planets, and in the race to detect Earth-analogs, i.e. planets that could support liquid water and, perhaps, life on their surfaces. We review the developments in Bayesian statistical techniques applicable to detections planets orbiting nearby stars and astronomical data analysis problems in general. We also discuss these techniques and demonstrate their usefulness by using various examples and detailed descriptions of the respective mathematics involved. We demonstrate the practical aspects of Bayesian statistical techniques by describing several algorithms and numerical techniques, as well as theoretical constructions, in the estimation of model parameters and in hypothesis testing. We also apply these algorithms to Doppler measurements of nearby stars to show how they can be used in practice to obtain as much information from the noisy data as possible. Bayesian statistical techniques are powerful tools in analysing and interpreting noisy data and should be preferred in practice whenever computational limitations are not too restrictive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magaly Basconesin esitys Kirjastoverkkopäivillä 24.10.2013 Helsingissä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug discovery is a continuous process where researchers are constantly trying to find new and better drugs for the treatment of various conditions. Alzheimer’s disease, a neurodegenerative disease mostly affecting the elderly, has a complex etiology with several possible drug targets. Some of these targets have been known for years while other new targets and theories have emerged more recently. Cholinesterase inhibitors are the major class of drugs currently used for the symptomatic treatment of Alzheimer’s disease. In the Alzheimer’s disease brain there is a deficit of acetylcholine and an impairment in signal transmission. Acetylcholinesterase has therefore been the main target as this is the main enzyme hydrolysing acetylcholine and ending neurotransmission. It is believed that by inhibiting acetylcholinesterase the cholinergic signalling can be enhanced and the cognitive symptoms that arise in Alzheimer’s disease can be improved. Butyrylcholinesterase, the second enzyme of the cholinesterase family, has more recently attracted interest among researchers. Its function is still not fully known, but it is believed to play a role in several diseases, one of them being Alzheimer’s disease. In this contribution the aim has primarily been to identify butyrylcholinesterase inhibitors to be used as drug molecules or molecular probes in the future. Both synthetic and natural compounds in diverse and targeted screening libraries have been used for this purpose. The active compounds have been further characterized regarding their potencies, cytotoxicity, and furthermore, in two of the publications, the inhibitors ability to also inhibit Aβ aggregation in an attempt to discover bifunctional compounds. Further, in silico methods were used to evaluate the binding position of the active compounds with the enzyme targets. Mostly to differentiate between the selectivity towards acetylcholinesterase and butyrylcholinesterase, but also to assess the structural features required for enzyme inhibition. We also evaluated the compounds, active and non-active, in chemical space using the web-based tool ChemGPS-NP to try and determine the relevant chemical space occupied by cholinesterase inhibitors. In this study, we have succeeded in finding potent butyrylcholinesterase inhibitors with a diverse set of structures, nine chemical classes in total. In addition, some of the compounds are bifunctional as they also inhibit Aβ aggregation. The data gathered from all publications regarding the chemical space occupied by butyrylcholinesterase inhibitors we believe will give an insight into the chemically active space occupied by this type of inhibitors and will hopefully facilitate future screening and result in an even deeper knowledge of butyrylcholinesterase inhibitors.