18 resultados para Computational tools

em CaltechTHESIS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Computational protein design (CPD) is a burgeoning field that uses a physical-chemical or knowledge-based scoring function to create protein variants with new or improved properties. This exciting approach has recently been used to generate proteins with entirely new functions, ones that are not observed in naturally occurring proteins. For example, several enzymes were designed to catalyze reactions that are not in the repertoire of any known natural enzyme. In these designs, novel catalytic activity was built de novo (from scratch) into a previously inert protein scaffold. In addition to de novo enzyme design, the computational design of protein-protein interactions can also be used to create novel functionality, such as neutralization of influenza. Our goal here was to design a protein that can self-assemble with DNA into nanowires. We used computational tools to homodimerize a transcription factor that binds a specific sequence of double-stranded DNA. We arranged the protein-protein and protein-DNA binding sites so that the self-assembly could occur in a linear fashion to generate nanowires. Upon mixing our designed protein homodimer with the double-stranded DNA, the molecules immediately self-assembled into nanowires. This nanowire topology was confirmed using atomic force microscopy. Co-crystal structure showed that the nanowire is assembled via the desired interactions. To the best of our knowledge, this is the first example of a protein-DNA self-assembly that does not rely on covalent interactions. We anticipate that this new material will stimulate further interest in the development of advanced biomaterials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main focus of this thesis is the use of high-throughput sequencing technologies in functional genomics (in particular in the form of ChIP-seq, chromatin immunoprecipitation coupled with sequencing, and RNA-seq) and the study of the structure and regulation of transcriptomes. Some parts of it are of a more methodological nature while others describe the application of these functional genomic tools to address various biological problems. A significant part of the research presented here was conducted as part of the ENCODE (ENCyclopedia Of DNA Elements) Project.

The first part of the thesis focuses on the structure and diversity of the human transcriptome. Chapter 1 contains an analysis of the diversity of the human polyadenylated transcriptome based on RNA-seq data generated for the ENCODE Project. Chapter 2 presents a simulation-based examination of the performance of some of the most popular computational tools used to assemble and quantify transcriptomes. Chapter 3 includes a study of variation in gene expression, alternative splicing and allelic expression bias on the single-cell level and on a genome-wide scale in human lymphoblastoid cells; it also brings forward a number of critical to the practice of single-cell RNA-seq measurements methodological considerations.

The second part presents several studies applying functional genomic tools to the study of the regulatory biology of organellar genomes, primarily in mammals but also in plants. Chapter 5 contains an analysis of the occupancy of the human mitochondrial genome by TFAM, an important structural and regulatory protein in mitochondria, using ChIP-seq. In Chapter 6, the mitochondrial DNA occupancy of the TFB2M transcriptional regulator, the MTERF termination factor, and the mitochondrial RNA and DNA polymerases is characterized. Chapter 7 consists of an investigation into the curious phenomenon of the physical association of nuclear transcription factors with mitochondrial DNA, based on the diverse collections of transcription factor ChIP-seq datasets generated by the ENCODE, mouseENCODE and modENCODE consortia. In Chapter 8 this line of research is further extended to existing publicly available ChIP-seq datasets in plants and their mitochondrial and plastid genomes.

The third part is dedicated to the analytical and experimental practice of ChIP-seq. As part of the ENCODE Project, a set of metrics for assessing the quality of ChIP-seq experiments was developed, and the results of this activity are presented in Chapter 9. These metrics were later used to carry out a global analysis of ChIP-seq quality in the published literature (Chapter 10). In Chapter 11, the development and initial application of an automated robotic ChIP-seq (in which these metrics also played a major role) is presented.

The fourth part presents the results of some additional projects the author has been involved in, including the study of the role of the Piwi protein in the transcriptional regulation of transposon expression in Drosophila (Chapter 12), and the use of single-cell RNA-seq to characterize the heterogeneity of gene expression during cellular reprogramming (Chapter 13).

The last part of the thesis provides a review of the results of the ENCODE Project and the interpretation of the complexity of the biochemical activity exhibited by mammalian genomes that they have revealed (Chapters 15 and 16), an overview of the expected in the near future technical developments and their impact on the field of functional genomics (Chapter 14), and a discussion of some so far insufficiently explored research areas, the future study of which will, in the opinion of the author, provide deep insights into many fundamental but not yet completely answered questions about the transcriptional biology of eukaryotes and its regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational general relativity is a field of study which has reached maturity only within the last decade. This thesis details several studies that elucidate phenomena related to the coalescence of compact object binaries. Chapters 2 and 3 recounts work towards developing new analytical tools for visualizing and reasoning about dynamics in strongly curved spacetimes. In both studies, the results employ analogies with the classical theory of electricity and magnitism, first (Ch. 2) in the post-Newtonian approximation to general relativity and then (Ch. 3) in full general relativity though in the absence of matter sources. In Chapter 4, we examine the topological structure of absolute event horizons during binary black hole merger simulations conducted with the SpEC code. Chapter 6 reports on the progress of the SpEC code in simulating the coalescence of neutron star-neutron star binaries, while Chapter 7 tests the effects of various numerical gauge conditions on the robustness of black hole formation from stellar collapse in SpEC. In Chapter 5, we examine the nature of pseudospectral expansions of non-smooth functions motivated by the need to simulate the stellar surface in Chapters 6 and 7. In Chapter 8, we study how thermal effects in the nuclear equation of state effect the equilibria and stability of hypermassive neutron stars. Chapter 9 presents supplements to the work in Chapter 8, including an examination of the stability question raised in Chapter 8 in greater mathematical detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Part 1 of this thesis, we propose that biochemical cooperativity is a fundamentally non-ideal process. We show quantal effects underlying biochemical cooperativity and highlight apparent ergodic breaking at small volumes. The apparent ergodic breaking manifests itself in a divergence of deterministic and stochastic models. We further predict that this divergence of deterministic and stochastic results is a failure of the deterministic methods rather than an issue of stochastic simulations.

Ergodic breaking at small volumes may allow these molecular complexes to function as switches to a greater degree than has previously been shown. We propose that this ergodic breaking is a phenomenon that the synapse might exploit to differentiate Ca$^{2+}$ signaling that would lead to either the strengthening or weakening of a synapse. Techniques such as lattice-based statistics and rule-based modeling are tools that allow us to directly confront this non-ideality. A natural next step to understanding the chemical physics that underlies these processes is to consider \textit{in silico} specifically atomistic simulation methods that might augment our modeling efforts.

In the second part of this thesis, we use evolutionary algorithms to optimize \textit{in silico} methods that might be used to describe biochemical processes at the subcellular and molecular levels. While we have applied evolutionary algorithms to several methods, this thesis will focus on the optimization of charge equilibration methods. Accurate charges are essential to understanding the electrostatic interactions that are involved in ligand binding, as frequently discussed in the first part of this thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This document contains three papers examining the microstructure of financial interaction in development and market settings. I first examine the industrial organization of financial exchanges, specifically limit order markets. In this section, I perform a case study of Google stock surrounding a surprising earnings announcement in the 3rd quarter of 2009, uncovering parameters that describe information flows and liquidity provision. I then explore the disbursement process for community-driven development projects. This section is game theoretic in nature, using a novel three-player ultimatum structure. I finally develop econometric tools to simulate equilibrium and identify equilibrium models in limit order markets.

In chapter two, I estimate an equilibrium model using limit order data, finding parameters that describe information and liquidity preferences for trading. As a case study, I estimate the model for Google stock surrounding an unexpected good-news earnings announcement in the 3rd quarter of 2009. I find a substantial decrease in asymmetric information prior to the earnings announcement. I also simulate counterfactual dealer markets and find empirical evidence that limit order markets perform more efficiently than do their dealer market counterparts.

In chapter three, I examine Community-Driven Development. Community-Driven Development is considered a tool empowering communities to develop their own aid projects. While evidence has been mixed as to the effectiveness of CDD in achieving disbursement to intended beneficiaries, the literature maintains that local elites generally take control of most programs. I present a three player ultimatum game which describes a potential decentralized aid procurement process. Players successively split a dollar in aid money, and the final player--the targeted community member--decides between whistle blowing or not. Despite the elite capture present in my model, I find conditions under which money reaches targeted recipients. My results describe a perverse possibility in the decentralized aid process which could make detection of elite capture more difficult than previously considered. These processes may reconcile recent empirical work claiming effectiveness of the decentralized aid process with case studies which claim otherwise.

In chapter four, I develop in more depth the empirical and computational means to estimate model parameters in the case study in chapter two. I describe the liquidity supplier problem and equilibrium among those suppliers. I then outline the analytical forms for computing certainty-equivalent utilities for the informed trader. Following this, I describe a recursive algorithm which facilitates computing equilibrium in supply curves. Finally, I outline implementation of the Method of Simulated Moments in this context, focusing on Indirect Inference and formulating the pseudo model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dissertation studies the general area of complex networked systems that consist of interconnected and active heterogeneous components and usually operate in uncertain environments and with incomplete information. Problems associated with those systems are typically large-scale and computationally intractable, yet they are also very well-structured and have features that can be exploited by appropriate modeling and computational methods. The goal of this thesis is to develop foundational theories and tools to exploit those structures that can lead to computationally-efficient and distributed solutions, and apply them to improve systems operations and architecture.

Specifically, the thesis focuses on two concrete areas. The first one is to design distributed rules to manage distributed energy resources in the power network. The power network is undergoing a fundamental transformation. The future smart grid, especially on the distribution system, will be a large-scale network of distributed energy resources (DERs), each introducing random and rapid fluctuations in power supply, demand, voltage and frequency. These DERs provide a tremendous opportunity for sustainability, efficiency, and power reliability. However, there are daunting technical challenges in managing these DERs and optimizing their operation. The focus of this dissertation is to develop scalable, distributed, and real-time control and optimization to achieve system-wide efficiency, reliability, and robustness for the future power grid. In particular, we will present how to explore the power network structure to design efficient and distributed market and algorithms for the energy management. We will also show how to connect the algorithms with physical dynamics and existing control mechanisms for real-time control in power networks.

The second focus is to develop distributed optimization rules for general multi-agent engineering systems. A central goal in multiagent systems is to design local control laws for the individual agents to ensure that the emergent global behavior is desirable with respect to the given system level objective. Ideally, a system designer seeks to satisfy this goal while conditioning each agent’s control on the least amount of information possible. Our work focused on achieving this goal using the framework of game theory. In particular, we derived a systematic methodology for designing local agent objective functions that guarantees (i) an equivalence between the resulting game-theoretic equilibria and the system level design objective and (ii) that the resulting game possesses an inherent structure that can be exploited for distributed learning, e.g., potential games. The control design can then be completed by applying any distributed learning algorithm that guarantees convergence to the game-theoretic equilibrium. One main advantage of this game theoretic approach is that it provides a hierarchical decomposition between the decomposition of the systemic objective (game design) and the specific local decision rules (distributed learning algorithms). This decomposition provides the system designer with tremendous flexibility to meet the design objectives and constraints inherent in a broad class of multiagent systems. Furthermore, in many settings the resulting controllers will be inherently robust to a host of uncertainties including asynchronous clock rates, delays in information, and component failures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis covers a range of topics in numerical and analytical relativity, centered around introducing tools and methodologies for the study of dynamical spacetimes. The scope of the studies is limited to classical (as opposed to quantum) vacuum spacetimes described by Einstein's general theory of relativity. The numerical works presented here are carried out within the Spectral Einstein Code (SpEC) infrastructure, while analytical calculations extensively utilize Wolfram's Mathematica program.

We begin by examining highly dynamical spacetimes such as binary black hole mergers, which can be investigated using numerical simulations. However, there are difficulties in interpreting the output of such simulations. One difficulty stems from the lack of a canonical coordinate system (henceforth referred to as gauge freedom) and tetrad, against which quantities such as Newman-Penrose Psi_4 (usually interpreted as the gravitational wave part of curvature) should be measured. We tackle this problem in Chapter 2 by introducing a set of geometrically motivated coordinates that are independent of the simulation gauge choice, as well as a quasi-Kinnersley tetrad, also invariant under gauge changes in addition to being optimally suited to the task of gravitational wave extraction.

Another difficulty arises from the need to condense the overwhelming amount of data generated by the numerical simulations. In order to extract physical information in a succinct and transparent manner, one may define a version of gravitational field lines and field strength using spatial projections of the Weyl curvature tensor. Introduction, investigation and utilization of these quantities will constitute the main content in Chapters 3 through 6.

For the last two chapters, we turn to the analytical study of a simpler dynamical spacetime, namely a perturbed Kerr black hole. We will introduce in Chapter 7 a new analytical approximation to the quasi-normal mode (QNM) frequencies, and relate various properties of these modes to wave packets traveling on unstable photon orbits around the black hole. In Chapter 8, we study a bifurcation in the QNM spectrum as the spin of the black hole a approaches extremality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop new algorithms which combine the rigorous theory of mathematical elasticity with the geometric underpinnings and computational attractiveness of modern tools in geometry processing. We develop a simple elastic energy based on the Biot strain measure, which improves on state-of-the-art methods in geometry processing. We use this energy within a constrained optimization problem to, for the first time, provide surface parameterization tools which guarantee injectivity and bounded distortion, are user-directable, and which scale to large meshes. With the help of some new generalizations in the computation of matrix functions and their derivative, we extend our methods to a large class of hyperelastic stored energy functions quadratic in piecewise analytic strain measures, including the Hencky (logarithmic) strain, opening up a wide range of possibilities for robust and efficient nonlinear elastic simulation and geometry processing by elastic analogy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a probabilistic assessment of the performance of structures subjected to uncertain environmental loads such as earthquakes, an important problem is to determine the probability that the structural response exceeds some specified limits within a given duration of interest. This problem is known as the first excursion problem, and it has been a challenging problem in the theory of stochastic dynamics and reliability analysis. In spite of the enormous amount of attention the problem has received, there is no procedure available for its general solution, especially for engineering problems of interest where the complexity of the system is large and the failure probability is small.

The application of simulation methods to solving the first excursion problem is investigated in this dissertation, with the objective of assessing the probabilistic performance of structures subjected to uncertain earthquake excitations modeled by stochastic processes. From a simulation perspective, the major difficulty in the first excursion problem comes from the large number of uncertain parameters often encountered in the stochastic description of the excitation. Existing simulation tools are examined, with special regard to their applicability in problems with a large number of uncertain parameters. Two efficient simulation methods are developed to solve the first excursion problem. The first method is developed specifically for linear dynamical systems, and it is found to be extremely efficient compared to existing techniques. The second method is more robust to the type of problem, and it is applicable to general dynamical systems. It is efficient for estimating small failure probabilities because the computational effort grows at a much slower rate with decreasing failure probability than standard Monte Carlo simulation. The simulation methods are applied to assess the probabilistic performance of structures subjected to uncertain earthquake excitation. Failure analysis is also carried out using the samples generated during simulation, which provide insight into the probable scenarios that will occur given that a structure fails.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis addresses a series of topics related to the question of how people find the foreground objects from complex scenes. With both computer vision modeling, as well as psychophysical analyses, we explore the computational principles for low- and mid-level vision.

We first explore the computational methods of generating saliency maps from images and image sequences. We propose an extremely fast algorithm called Image Signature that detects the locations in the image that attract human eye gazes. With a series of experimental validations based on human behavioral data collected from various psychophysical experiments, we conclude that the Image Signature and its spatial-temporal extension, the Phase Discrepancy, are among the most accurate algorithms for saliency detection under various conditions.

In the second part, we bridge the gap between fixation prediction and salient object segmentation with two efforts. First, we propose a new dataset that contains both fixation and object segmentation information. By simultaneously presenting the two types of human data in the same dataset, we are able to analyze their intrinsic connection, as well as understanding the drawbacks of today’s “standard” but inappropriately labeled salient object segmentation dataset. Second, we also propose an algorithm of salient object segmentation. Based on our novel discoveries on the connections of fixation data and salient object segmentation data, our model significantly outperforms all existing models on all 3 datasets with large margins.

In the third part of the thesis, we discuss topics around the human factors of boundary analysis. Closely related to salient object segmentation, boundary analysis focuses on delimiting the local contours of an object. We identify the potential pitfalls of algorithm evaluation for the problem of boundary detection. Our analysis indicates that today’s popular boundary detection datasets contain significant level of noise, which may severely influence the benchmarking results. To give further insights on the labeling process, we propose a model to characterize the principles of the human factors during the labeling process.

The analyses reported in this thesis offer new perspectives to a series of interrelating issues in low- and mid-level vision. It gives warning signs to some of today’s “standard” procedures, while proposing new directions to encourage future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The visual system is a remarkable platform that evolved to solve difficult computational problems such as detection, recognition, and classification of objects. Of great interest is the face-processing network, a sub-system buried deep in the temporal lobe, dedicated for analyzing specific type of objects (faces). In this thesis, I focus on the problem of face detection by the face-processing network. Insights obtained from years of developing computer-vision algorithms to solve this task have suggested that it may be efficiently and effectively solved by detection and integration of local contrast features. Does the brain use a similar strategy? To answer this question, I embark on a journey that takes me through the development and optimization of dedicated tools for targeting and perturbing deep brain structures. Data collected using MR-guided electrophysiology in early face-processing regions was found to have strong selectivity for contrast features, similar to ones used by artificial systems. While individual cells were tuned for only a small subset of features, the population as a whole encoded the full spectrum of features that are predictive to the presence of a face in an image. Together with additional evidence, my results suggest a possible computational mechanism for face detection in early face processing regions. To move from correlation to causation, I focus on adopting an emergent technology for perturbing brain activity using light: optogenetics. While this technique has the potential to overcome problems associated with the de-facto way of brain stimulation (electrical microstimulation), many open questions remain about its applicability and effectiveness for perturbing the non-human primate (NHP) brain. In a set of experiments, I use viral vectors to deliver genetically encoded optogenetic constructs to the frontal eye field and faceselective regions in NHP and examine their effects side-by-side with electrical microstimulation to assess their effectiveness in perturbing neural activity as well as behavior. Results suggest that cells are robustly and strongly modulated upon light delivery and that such perturbation can modulate and even initiate motor behavior, thus, paving the way for future explorations that may apply these tools to study connectivity and information flow in the face processing network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis introduces new tools for geometric discretization in computer graphics and computational physics. Our work builds upon the duality between weighted triangulations and power diagrams to provide concise, yet expressive discretization of manifolds and differential operators. Our exposition begins with a review of the construction of power diagrams, followed by novel optimization procedures to fully control the local volume and spatial distribution of power cells. Based on this power diagram framework, we develop a new family of discrete differential operators, an effective stippling algorithm, as well as a new fluid solver for Lagrangian particles. We then turn our attention to applications in geometry processing. We show that orthogonal primal-dual meshes augment the notion of local metric in non-flat discrete surfaces. In particular, we introduce a reduced set of coordinates for the construction of orthogonal primal-dual structures of arbitrary topology, and provide alternative metric characterizations through convex optimizations. We finally leverage these novel theoretical contributions to generate well-centered primal-dual meshes, sphere packing on surfaces, and self-supporting triangulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

These studies explore how, where, and when representations of variables critical to decision-making are represented in the brain. In order to produce a decision, humans must first determine the relevant stimuli, actions, and possible outcomes before applying an algorithm that will select an action from those available. When choosing amongst alternative stimuli, the framework of value-based decision-making proposes that values are assigned to the stimuli and that these values are then compared in an abstract “value space” in order to produce a decision. Despite much progress, in particular regarding the pinpointing of ventromedial prefrontal cortex (vmPFC) as a region that encodes the value, many basic questions remain. In Chapter 2, I show that distributed BOLD signaling in vmPFC represents the value of stimuli under consideration in a manner that is independent of the type of stimulus it is. Thus the open question of whether value is represented in abstraction, a key tenet of value-based decision-making, is confirmed. However, I also show that stimulus-dependent value representations are also present in the brain during decision-making and suggest a potential neural pathway for stimulus-to-value transformations that integrates these two results.

More broadly speaking, there is both neural and behavioral evidence that two distinct control systems are at work during action selection. These two systems compose the “goal-directed system”, which selects actions based on an internal model of the environment, and the “habitual” system, which generates responses based on antecedent stimuli only. Computational characterizations of these two systems imply that they have different informational requirements in terms of input stimuli, actions, and possible outcomes. Associative learning theory predicts that the habitual system should utilize stimulus and action information only, while goal-directed behavior requires that outcomes as well as stimuli and actions be processed. In Chapter 3, I test whether areas of the brain hypothesized to be involved in habitual versus goal-directed control represent the corresponding theorized variables.

The question of whether one or both of these neural systems drives Pavlovian conditioning is less well-studied. Chapter 4 describes an experiment in which subjects were scanned while engaged in a Pavlovian task with a simple non-trivial structure. After comparing a variety of model-based and model-free learning algorithms (thought to underpin goal-directed and habitual decision-making, respectively), it was found that subjects’ reaction times were better explained by a model-based system. In addition, neural signaling of precision, a variable based on a representation of a world model, was found in the amygdala. These data indicate that the influence of model-based representations of the environment can extend even to the most basic learning processes.

Knowledge of the state of hidden variables in an environment is required for optimal inference regarding the abstract decision structure of a given environment and therefore can be crucial to decision-making in a wide range of situations. Inferring the state of an abstract variable requires the generation and manipulation of an internal representation of beliefs over the values of the hidden variable. In Chapter 5, I describe behavioral and neural results regarding the learning strategies employed by human subjects in a hierarchical state-estimation task. In particular, a comprehensive model fit and comparison process pointed to the use of "belief thresholding". This implies that subjects tended to eliminate low-probability hypotheses regarding the state of the environment from their internal model and ceased to update the corresponding variables. Thus, in concert with incremental Bayesian learning, humans explicitly manipulate their internal model of the generative process during hierarchical inference consistent with a serial hypothesis testing strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) are the largest family of proteins within the human genome. They consist of seven transmembrane (TM) helices, with a N-terminal region of varying length and structure on the extracellular side, and a C-terminus on the intracellular side. GPCRs are involved in transmitting extracellular signals to cells, and as such are crucial drug targets. Designing pharmaceuticals to target GPCRs is greatly aided by full-atom structural information of the proteins. In particular, the TM region of GPCRs is where small molecule ligands (much more bioavailable than peptide ligands) typically bind to the receptors. In recent years nearly thirty distinct GPCR TM regions have been crystallized. However, there are more than 1,000 GPCRs, leaving the vast majority of GPCRs with limited structural information. Additionally, GPCRs are known to exist in a myriad of conformational states in the body, rendering the static x-ray crystal structures an incomplete reflection of GPCR structures. In order to obtain an ensemble of GPCR structures, we have developed the GEnSeMBLE procedure to rapidly sample a large number of variations of GPCR helix rotations and tilts. The lowest energy GEnSeMBLE structures are then docked to small molecule ligands and optimized. The GPCR family consists of five subfamilies with little to no sequence homology between them: class A, B1, B2, C, and Frizzled/Taste2. Almost all of the GPCR crystal structures have been of class A GPCRs, and much is known about their conserved interactions and binding sites. In this work we particularly focus on class B1 GPCRs, and aim to understand that family’s interactions and binding sites both to small molecules and their native peptide ligands. Specifically, we predict the full atom structure and peptide binding site of the glucagon-like peptide receptor and the TM region and small molecule binding sites for eight other class B1 GPCRs: CALRL, CRFR1, GIPR, GLR, PACR, PTH1R, VIPR1, and VIPR2. Our class B1 work reveals multiple conserved interactions across the B1 subfamily as well as a consistent small molecule binding site centrally located in the TM bundle. Both the interactions and the binding sites are distinct from those seen in the more well-characterized class A GPCRs, and as such our work provides a strong starting point for drug design targeting class B1 proteins. We also predict the full structure of CXCR4 bound to a small molecule, a class A GPCR that was not closely related to any of the class A GPCRs at the time of the work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a complete system for Spectral Cauchy characteristic extraction (Spectral CCE). Implemented in C++ within the Spectral Einstein Code (SpEC), the method employs numerous innovative algorithms to efficiently calculate the Bondi strain, news, and flux.

Spectral CCE was envisioned to ensure physically accurate gravitational wave-forms computed for the Laser Interferometer Gravitational wave Observatory (LIGO) and similar experiments, while working toward a template bank with more than a thousand waveforms to span the binary black hole (BBH) problem’s seven-dimensional parameter space.

The Bondi strain, news, and flux are physical quantities central to efforts to understand and detect astrophysical gravitational wave sources within the Simulations of eXtreme Spacetime (SXS) collaboration, with the ultimate aim of providing the first strong field probe of the Einstein field equation.

In a series of included papers, we demonstrate stability, convergence, and gauge invariance. We also demonstrate agreement between Spectral CCE and the legacy Pitt null code, while achieving a factor of 200 improvement in computational efficiency.

Spectral CCE represents a significant computational advance. It is the foundation upon which further capability will be built, specifically enabling the complete calculation of junk-free, gauge-free, and physically valid waveform data on the fly within SpEC.