57 resultados para Aluminium-silicates
Resumo:
Diplomityössä tutkittiin kromatografian, elektroforeesin ja spektrometrian käyttöä ympäristövesianalytiikassa. Kokeellisessa osassa analysoitiin Saimaan Vesi- ja Ympäristötutkimus Oy:n keräämistä kaatopaikka-, jätevesi-, pohjavesi-, vesistö-, uimahalli-, yksityiskaivo-, poreallas- ja suovesinäytteistä epäorgaaniset anionit (F-, Cl-, Br-, NO3-, NO2- SO42-ja PO42-) sekä ionikromatografilla että kapillaarielektroforeesilla. Näytteet on kerätty Saimaan alueen ympäristökunnista. Kapillaarielektroforeesilla analysoitiin lisäksi tiosulfaatti. Liekkiatomiabsorptio-spektrometrilla analysoitiin Cu, Fe, Na ja Al. Natriumia löytyi jokaisesta vesinäytteestä. Pohjavesistä ei löytynyt rautaa eikä alumiinia ja kuparipitoisuudet olivat alle määritysrajan. Vesistövesistä kahdessa näytteessä oli alle määritysrajan olevia rautapitoisuuksia. Muissa näytteissä ei rautaa ollut. Suovesistä kuparia löytyi hyvin pieniä määriä ja yhdestä näytteestä alumiinia alle määritysrajan. Kaatopaikkavesissä kuparipitoisuudet sekä kolmessa näytteessä alumiinipitoisuudet olivat alle määritysrajan. Jätevesistä oletettiin löytyvän suuria määriä typpispesieksiä ja fosforia. Niitä kuitenkin esiintyi isoissa pitoisuuksissa vain suovesinäytteissä. Jätevesinäytteet sisälsivät bromidia, nitraattia ja fluoridia jopa yli 140 mg/l. Kapillaarielektroforeesilla ja ionikromatografilla mitatut anionipitoisuudet korreloivat hyvin toisiaan. Kontaminoituja vesiä löytyi pohja-, kaatopaikka-, jäte- ja vesistövesistä sekä uima-altaan terapiaaltaan vedestä.
Resumo:
Valupurseiden ja jäysteiden poistaminen on osa alumiinipainevalujen tuotantoprosessia. Työssä on tutkittu käytössä olevien ja uusien menetelmien mahdollisuuksia taloudellisempaan tuotantoon. Purseiden ja jäysteiden poistamiseen käytettävien menetelmien lisäksi tutkimuskohteita ja ideoita on haettu muista metallien työstömenetelmistä. Valupurseiden ja jäysteiden määritelmiä, muodostumista ja luokittelua on esitelty laajasti. Menetelmien tutkimus on painottunut valupurseiden poistamiseen ja valun jälkeistä leikkaamista on tutkittu erityisesti sisäpuolisten muotojen työstämiseen käytettyjen pistintyökalujen kautta. Muotin ulostyöntötapin purseen poistaminen on ollut tärkeä asia menetelmien tutkimuksissa. Valupurseiden, leikkaus- ja koneistusjäysteiden poistamiseksi lastuavista työstömenetelmistä tutkittuja ovat koneistaminen koneistuskeskuksella, aventaminen, hiertopuhallus, suihkuhiertäminen, vesisuihkuleikkaus, ultraäänityöstö, harjaus, painehiertäminen, hiominen kohdistetuilla ja kohdistamattomilla menetelmillä. Myös terminen jäysteenpoistomenetelmä (TEM), kemiallinen työstö (ECM) ja laserleikkaus on otettu esiin tutkimuksessa. Työn tuloksena on näkemys tutkittujen menetelmien jatkokehitystarpeesta ja mahdollisuudesta soveltaa niitä sarjatuotantoon.
Resumo:
The main purpose of this work was to study different kinds of metal-based tunnel junctions at low temperatures. The problem which had to be solved was creating a junction with appropriate properties at these temperatures. The materials for junctions were found experimentally. The goal was to find an alloy material that can provide a high quality tunnel junction, which remains in the normal conductive state at low temperatures without applying magnetic field. The fabrication technology of such a device, based on an alloy of aluminium and manganese, is described in detail. In this thesis theoretical properties of tunnel junctions are considered and results of experiments with tunnel junctions are described and quantitative properties of the junctions are analyzed based on the experimental data.
Resumo:
There are small amounts of valuable metals, such as indium, gallium and germanium, in zinc process solutions. Their solvent extraction was studied in this work in sulphate solutions containing zinc and other metals present in industrial solutions. It was discovered, that a commercial bis(2-ethylhexyl)phosphate (D2EHPA) extractant can be used to extract indium and gallium. Indium was extracted separately at a higher acid concentration than gallium. Zinc was co-extracted faster than gallium and almost as much as gallium at the same pH. However, the scrubbing of zinc was possible using a dilute sulphuric acid and a short contact time while gallium losses were small. Both indium and gallium were stripped with sulphuric acid. Germanium was extracted with 5,8-diethyl-7-hydroxydodecane-6-oxime with the commercial name of LIX 63. Unlike other metals in the solution the extraction of germanium increased with different extractants as the acidity increased. Germanium extraction isotherm was measured for a 125 g/L sulfuric acid solution. The loaded organic phase was washed with pure water. It removed the co-extracted acid and part of the germanium and extracted impurities such as iron and copper. Germanium was stripped using a NaOH solution. A process model utilizing own experimentally determined extraction, scrubbing and stripping isotherms was made with HSC Sim software developed by Outotec Oyj. The model based on McCabe–Thiele diagrams was used in sizing the necessary amount of stages and phase ratios in a recovery process. It was concluded, that indium, gallium and germanium can be recovered in the process from a feed where their concentrations are low (<300 ppm). In an example case the feed contained also more than 20 g/L zinc and 2–8 g/L iron, aluminium and copper. The recoveries of indium, gallium and germanium were more than 90 % when 1–3 stages were used in each extraction, scrubbing and stripping section. Since the number of stages is small mixer-settlers would be well suited for this purpose.
Resumo:
Alumiiniveneiden valmistuksessa hitsauksen automatisointiaste on hyvin matala. Kilpailukyvyn säilyttämiseksi on tärkeää saada automatisointiastetta nostettua ja tätä kautta hitsauskustannuksia alennettua. Automatisoinnin esteenä ei ole teknologian puute, vaan ongelmana on alumiiniveneiden rakenteen huono soveltuvuus automatisoituun tuotantoon. Rakenteen kehittäminen modulaariseksi on yksi mahdollisuus tehostaa robottihitsausta venerunkojen valmistuksessa. Tässä diplomityössä tutkittiin modulaarisuutta, modulointiin johtavia tekijöitä sekä modulaarisuudella mahdollisesti saavutettavia etuja valmistavassa teollisuudessa ja erityisesti robottihitsauksessa. Lisäksi käsiteltiin modulointiin läheisesti liittyvää valmistus- ja kokoonpanoystävällistä suunnittelua. Työssä tehtiin modulointiesimerkki huviveneen rungon robottihitsauksen tehostamiseksi. Veneen runko ja siihen suunniteltu jäykisterakennemoduuli mallinnettiin käyttäen SolidWorks-ohjelmistoa sekä Delmia V5-ohjelmistoon sisällytettyä Catia V5-suunnitteluympäristöä. Suunnitellun modulaarisen rakenteen hitsattavuutta ja hitsaukseen kuluvaa aikaa simuloitiin Delmia V5-ohjelmistolla. Modulaarisen rakenteen avulla robottihitsattavuutta on mahdollista tehostaa erityisesti rungon sisäisen jäykisterakenteen osalta. Kun tuotteesta on suurempi osa hitsattavissa robotin avulla, on myös robotisointi-investoinnit kannattavampia. Modulaarisuuden avulla voidaan päästä myös pienillä tuotantomäärillä sarjatuotannon etuihin, kun samaa moduulia voidaan käyttää vähäisillä muutoksilla useammassa eri venemallissa.
Resumo:
Tämän työn tarkoituksena oli selvittää, mitä on alumiinin pintakäsittelymenetelmä anodisointi ja kuinka se tapahtuu. Esille otettu esimerkkitapaus liittyy hitsatun alumiinin anodisointiin ja siinä ilmenneisiin ongelmiin.
Resumo:
Työssä tutkitaan kohdeyrityksen suunnitteleman aksiaalivuosähkömoottorin alumiinisen valurungon väsymiskestävyyttä tyypillisessä käyttökohteessa, huomioiden sähkömagnetiikan aiheuttamat kuormitukset. Saatujen tulosten avulla halutaan optimoida valurungon rakennetta ja määrittää rungolle kestoikäarvio.
Resumo:
This thesis is part of the Arctic Materials Technologies Development –project, which aims to research and develop manufacturing techniques, especially welding, for Arctic areas. The main target of this paper is to clarify what kind of European metallic materials are used, or can be used, in Arctic. These materials include mainly carbon steels but also stainless steels and aluminium and its alloys. Standardized materials, their properties and also some recent developments are being introduced. Based on this thesis it can be said that carbon steels (shipbuilding and pipeline steels) have been developed based on needs of industry and steels exist, which can be used in Arctic areas. Still, these steels cannot be fully benefited, because rules and standards are under development. Also understanding of fracture behavior of new ultra high strength steels is not yet good enough, which means that research methods (destructive and non-destructive methods) need to be developed too. The most of new nickel-free austenitic and austenitic-ferritic stainless steels can be used in cold environment. Ferritic and martensitic stainless steels are being developed for better weldability and these steels are mainly developed in nuclear industry. Aluminium alloys are well suitable for subzero environment and these days high strength aluminium alloys are available also as thick sheets. Nanotechnology makes it possible to manufacture steels, stainless steels and aluminium alloys with even higher strength. Joining techniques needs to be developed and examined properly to achieve economical and safe way to join these modern alloys.
Resumo:
Chemical coagulation is commonly used in raw water and wastewater treatment plants for the destabilisation of pollutants so that they can be removed in the subsequent separation processes. The most commonly used coagulation chemicals are aluminium and iron metal salts. Electrocoagulation technology has also been proposed for the treatment of raw waters and wastewaters. With this technology, metal cations are produced on the electrodes via electrolysis and these cations form various hydroxides in the water depending on the water pH. In addition to this main reaction, several side reactions, such as hydrogen bubble formation and the reduction of metals on cathodes, also take place in the cell. In this research, the applications of electrocoagulation were investigated in raw water treatment and wastewater applications. The surface water used in this research contained high concentrations of natural organic matter (NOM). The effect of the main parameters – current density, initial pH, electric charge per volume, temperature and electrolysis cell construction – on NOM removal were investigated. In the wastewater treatment studies, the removal of malodorous sulphides and toxic compounds from the wastewaters and debarking effluents were studied. Also, the main parameters of the treatment, such as initial pH and current density, were investigated. Aluminium electrodes were selected for the raw water treatment, whereas wastewaters and debarking effluent were treated with iron electrodes. According to results of this study, aluminium is more suitable electrode material for electrocoagulation applications because it produces Al(III) species. Metal ions and hydroxides produced by iron electrodes are less effective in the destabilisation of pollutants because iron electrodes produce more soluble and less charged Fe(II) species. However, Fe(II) can be effective in some special applications, such as sulphide removal. The resulting metal concentration is the main parameter affecting destabilisation of pollutants. Current density, treatment time, temperature and electrolysis cell construction affect the dissolution of electrodes and hence also the removal of pollutants. However, it seems that these parameters have minimal significance in the destabilization of the pollutants besides this effect (in the studied range of parameters). Initial pH and final pH have an effect on the dissolution of electrodes, but they also define what aluminium or iron species are formed in the solution and have an effect on the ζ-potential of all charged species in the solution. According to the results of this study, destabilisation mechanisms of pollutants by electrocoagulation and chemical coagulation are similar. Optimum DOC removal and low residual aluminium can be obtained simultaneously with electrocoagulation, which may be a significant benefit of electrocoagulation in surface water treatment compared to chemical coagulation. Surface water treatment with electrocoagulation can produce high quality water, which could be used as potable water or fresh water for industrial applications. In wastewater treatment applications, electrocoagulation can be used to precipitate malodorous sulphides to prevent their release into air. Technology seems to be able to remove some toxic pollutants from wastewater and could be used as pretreatment prior to treatment at a biological wastewater treatment plant. However, a thorough economic and ecological comparison of chemical coagulation and electrocoagulation is recommended, because these methods seem to be similar in pollutant destabilisation mechanisms, metal consumption and removal efficiency in most applications.
Resumo:
Sequestration of carbon dioxide in mineral rocks, also known as CO2 Capture and Mineralization (CCM), is considered to have a huge potential in stabilizing anthropogenic CO2 emissions. One of the CCM routes is the ex situ indirect gas/sold carbonation of reactive materials, such as Mg(OH)2, produced from abundantly available Mg-silicate rocks. The gas/solid carbonation method is intensively researched at Åbo Akademi University (ÅAU ), Finland because it is energetically attractive and utilizes the exothermic chemistry of Mg(OH)2 carbonation. In this thesis, a method for producing Mg(OH)2 from Mg-silicate rocks for CCM was investigated, and the process efficiency, energy and environmental impact assessed. The Mg(OH)2 process studied here was first proposed in 2008 in a Master’s Thesis by the author. At that time the process was applied to only one Mg-silicate rock (Finnish serpentinite from the Hitura nickel mine site of Finn Nickel) and the optimum process conversions, energy and environmental performance were not known. Producing Mg(OH)2 from Mg-silicate rocks involves a two-staged process of Mg extraction and Mg(OH)2 precipitation. The first stage extracts Mg and other cations by reacting pulverized serpentinite or olivine rocks with ammonium sulfate (AS) salt at 400 - 550 oC (preferably < 450 oC). In the second stage, ammonia solution reacts with the cations (extracted from the first stage after they are leached in water) to form mainly FeOOH, high purity Mg(OH)2 and aqueous (dissolved) AS. The Mg(OH)2 process described here is closed loop in nature; gaseous ammonia and water vapour are produced from the extraction stage, recovered and used as reagent for the precipitation stage. The AS reagent is thereafter recovered after the precipitation stage. The Mg extraction stage, being the conversion-determining and the most energy-intensive step of the entire CCM process chain, received a prominent attention in this study. The extraction behavior and reactivity of different rocks types (serpentinite and olivine rocks) from different locations worldwide (Australia, Finland, Lithuania, Norway and Portugal) was tested. Also, parametric evaluation was carried out to determine the optimal reaction temperature, time and chemical reagent (AS). Effects of reactor types and configuration, mixing and scale-up possibilities were also studied. The Mg(OH)2 produced can be used to convert CO2 to thermodynamically stable and environmentally benign magnesium carbonate. Therefore, the process energy and life cycle environmental performance of the ÅAU CCM technique that first produces Mg(OH)2 and the carbonates in a pressurized fluidized bed (FB) were assessed. The life cycle energy and environmental assessment approach applied in this thesis is motivated by the fact that the CCM technology should in itself offer a solution to what is both an energy and environmental problem. Results obtained in this study show that different Mg-silicate rocks react differently; olivine rocks being far less reactive than serpentinite rocks. In summary, the reactivity of Mg-silicate rocks is a function of both the chemical and physical properties of rocks. Reaction temperature and time remain important parameters to consider in process design and operation. Heat transfer properties of the reactor determine the temperature at which maximum Mg extraction is obtained. Also, an increase in reaction temperature leads to an increase in the extent of extraction, reaching a maximum yield at different temperatures depending on the reaction time. Process energy requirement for producing Mg(OH)2 from a hypothetical case of an iron-free serpentine rock is 3.62 GJ/t-CO2. This value can increase by 16 - 68% depending on the type of iron compound (FeO, Fe2O3 or Fe3O4) in the mineral. This suggests that the benefit from the potential use of FeOOH as an iron ore feedstock in iron and steelmaking should be determined by considering the energy, cost and emissions associated with the FeOOH by-product. AS recovery through crystallization is the second most energy intensive unit operation after the extraction reaction. However, the choice of mechanical vapor recompression (MVR) over the “simple evaporation” crystallization method has a potential energy savings of 15.2 GJ/t-CO2 (84 % savings). Integrating the Mg(OH)2 production method and the gas/solid carbonation process could provide up to an 25% energy offset to the CCM process energy requirements. Life cycle inventory assessment (LCIA) results show that for every ton of CO2 mineralized, the ÅAU CCM process avoids 430 - 480 kg CO2. The Mg(OH)2 process studied in this thesis has many promising features. Even at the current high energy and environmental burden, producing Mg(OH)2 from Mg-silicates can play a significant role in advancing CCM processes. However, dedicated future research and development (R&D) have potential to significantly improve the Mg(OH)2 process performance.
Resumo:
With an increasingly growing demand for natural resources, the Arctic region has become an attractive area, holding about 15% of world oil. Ice shrinkage caused by global warming encourages the development of offshore and ship-building sectors. Russia, as one of the leading oil and gas production countries is participating actively in cold resistant materials research, since half of its territory belongs to the Arctic environment, which held considerable stores of oil. Nowadays most Russian offshore platforms are located in the Sakhalin Island area, which geographically does not belong to the Arctic, but has com-parable environmental conditions. Russia recently has manufactured several offshore platforms. It became clear that further development of the Arctic off-shore structures with necessary reliability is highly depending on the materials employed. This work pursues the following objectives: to provide a comprehensive review on Russian metals used for Arctic offshore structures on the base of standards, books, journal articles and companies reports to overview various Arctic offshore structures and its structural characteristics briefly discuss materials testing methods for low temperatures Master`s thesis focuses on specifications and description of Russian metals which are already in use and can be used for Arctic offshore structures. Work overviews several groups of steel, such as low carbon, low alloy, chromium containing steels, stainless steels, aluminium and nanostructured steels. Materials under discussion are grouped based on the standards, for instance the work covers shipbuilding and structural steels at the different sections. This paper provides an overview of important Russian Arctic offshore projects built for use in Russia and ordered by foreign countries. Future trends in development of the Arctic materials are discussed. Based on the information provided in this Master`s thesis it is possible to learn about Russian metals used for ships and offshore platforms operated in the Arctic region. Paper can be used as the comprehensive review of current materials, such as various steels, aluminium and nanomaterials.
Resumo:
Tämän diplomityön tavoitteena on ollut selvittää, kuinka robotisoitua hitsausta on mahdollista hyödyntää teollisuuskaiteiden valmistuksessa. Tutkimusmenetelminä käytettiin kirjallisuusselvitystä, hitsauskokeita ja makrohietutkimuksia. Työssä keskityttiin robottihitsauksen menetelmiin ja työstä on rajattu pois kaikki kustannuslaskelmat sekä alumiinin hitsaus. Hitsattavat materiaalit olivat rakenneteräs ja ruostumaton teräs. Rakenneteräsputken koko oli 42,4 x 2,6 mm ja ruostumattoman putken koko 42,4 x 2,0 mm. Käytetyt liitosmuodot olivat T-liitoksia, joista suorassa T-liitoksessa putkien välinen kulma oli 90 astetta ja vinossa T-liitoksessa noin 45 astetta. Tehdyn selvitystyön ja hitsauskokeiden perusteella voidaan sanoa, että kaiteissa käytettävien materiaalipaksuuksien ja liitosmuotojen hitsaaminen robotilla on mahdollista. Hitsauksen lopputulos riippuu hitsausasennosta ja paras tulos saavutetaan, kun kappaletta pyöritetään hitsauksen aikana siten, että hitsaus tapahtuu koko ajan jalkoasennossa.
Resumo:
Acid mine drainage (AMD) presents a serious problem for the environment for the massive formation of acidic leachates containing heavy metals. The present work deals with the AMD treatment using neutralizing limestone side-products. The conventional methods for prevention, mitigating and control of AMD formation are described. The experimental testing of Nordkalk Oy calcite-containing side-stones for acid neutralizing and removal of nickel from solutions presents the research objective. The batch experiments in acid neutralizing with subsequent metal content analysis were carried out. The results showed the dependence of pH on the dose of neutralizing material and the exposure time. The nickel removal, unlike iron, within the pH range from 1.2 to 6.0 appeared to be inadequate. The further research on nickel co-precipitation with iron and aluminium may appear to be necessary together with testing of alkalinity strengthening materials.