38 resultados para Agricultural systems modelling
Resumo:
The main objective of the present study was to design an agricultural robot, which work is based on the generation of the electricity by the solar panel. To achieve the proper operation of the robot according to the assumed working cycle the detailed design of the main equipment was made. By analysing the possible areas of implementation together with developments, the economic forecast was held. As a result a decision about possibility of such device working in agricultural sector was made and the probable topics of the further study were found out.
Resumo:
Effective control and limiting of carbon dioxide (CO₂) emissions in energy production are major challenges of science today. Current research activities include the development of new low-cost carbon capture technologies, and among the proposed concepts, chemical combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) have attracted significant attention allowing intrinsic separation of pure CO₂ from a hydrocarbon fuel combustion process with a comparatively small energy penalty. Both CLC and CLOU utilize the well-established fluidized bed technology, but several technical challenges need to be overcome in order to commercialize the processes. Therefore, development of proper modelling and simulation tools is essential for the design, optimization, and scale-up of chemical looping-based combustion systems. The main objective of this work was to analyze the technological feasibility of CLC and CLOU processes at different scales using a computational modelling approach. A onedimensional fluidized bed model frame was constructed and applied for simulations of CLC and CLOU systems consisting of interconnected fluidized bed reactors. The model is based on the conservation of mass and energy, and semi-empirical correlations are used to describe the hydrodynamics, chemical reactions, and transfer of heat in the reactors. Another objective was to evaluate the viability of chemical looping-based energy production, and a flow sheet model representing a CLC-integrated steam power plant was developed. The 1D model frame was succesfully validated based on the operation of a 150 kWth laboratory-sized CLC unit fed by methane. By following certain scale-up criteria, a conceptual design for a CLC reactor system at a pre-commercial scale of 100 MWth was created, after which the validated model was used to predict the performance of the system. As a result, further understanding of the parameters affecting the operation of a large-scale CLC process was acquired, which will be useful for the practical design work in the future. The integration of the reactor system and steam turbine cycle for power production was studied resulting in a suggested plant layout including a CLC boiler system, a simple heat recovery setup, and an integrated steam cycle with a three pressure level steam turbine. Possible operational regions of a CLOU reactor system fed by bituminous coal were determined via mass, energy, and exergy balance analysis. Finally, the 1D fluidized bed model was modified suitable for CLOU, and the performance of a hypothetical 500 MWth CLOU fuel reactor was evaluated by extensive case simulations.
Resumo:
Nowadays, computer-based systems tend to become more complex and control increasingly critical functions affecting different areas of human activities. Failures of such systems might result in loss of human lives as well as significant damage to the environment. Therefore, their safety needs to be ensured. However, the development of safety-critical systems is not a trivial exercise. Hence, to preclude design faults and guarantee the desired behaviour, different industrial standards prescribe the use of rigorous techniques for development and verification of such systems. The more critical the system is, the more rigorous approach should be undertaken. To ensure safety of a critical computer-based system, satisfaction of the safety requirements imposed on this system should be demonstrated. This task involves a number of activities. In particular, a set of the safety requirements is usually derived by conducting various safety analysis techniques. Strong assurance that the system satisfies the safety requirements can be provided by formal methods, i.e., mathematically-based techniques. At the same time, the evidence that the system under consideration meets the imposed safety requirements might be demonstrated by constructing safety cases. However, the overall safety assurance process of critical computerbased systems remains insufficiently defined due to the following reasons. Firstly, there are semantic differences between safety requirements and formal models. Informally represented safety requirements should be translated into the underlying formal language to enable further veri cation. Secondly, the development of formal models of complex systems can be labour-intensive and time consuming. Thirdly, there are only a few well-defined methods for integration of formal verification results into safety cases. This thesis proposes an integrated approach to the rigorous development and verification of safety-critical systems that (1) facilitates elicitation of safety requirements and their incorporation into formal models, (2) simplifies formal modelling and verification by proposing specification and refinement patterns, and (3) assists in the construction of safety cases from the artefacts generated by formal reasoning. Our chosen formal framework is Event-B. It allows us to tackle the complexity of safety-critical systems as well as to structure safety requirements by applying abstraction and stepwise refinement. The Rodin platform, a tool supporting Event-B, assists in automatic model transformations and proof-based verification of the desired system properties. The proposed approach has been validated by several case studies from different application domains.
Resumo:
Human activity recognition in everyday environments is a critical, but challenging task in Ambient Intelligence applications to achieve proper Ambient Assisted Living, and key challenges still remain to be dealt with to realize robust methods. One of the major limitations of the Ambient Intelligence systems today is the lack of semantic models of those activities on the environment, so that the system can recognize the speci c activity being performed by the user(s) and act accordingly. In this context, this thesis addresses the general problem of knowledge representation in Smart Spaces. The main objective is to develop knowledge-based models, equipped with semantics to learn, infer and monitor human behaviours in Smart Spaces. Moreover, it is easy to recognize that some aspects of this problem have a high degree of uncertainty, and therefore, the developed models must be equipped with mechanisms to manage this type of information. A fuzzy ontology and a semantic hybrid system are presented to allow modelling and recognition of a set of complex real-life scenarios where vagueness and uncertainty are inherent to the human nature of the users that perform it. The handling of uncertain, incomplete and vague data (i.e., missing sensor readings and activity execution variations, since human behaviour is non-deterministic) is approached for the rst time through a fuzzy ontology validated on real-time settings within a hybrid data-driven and knowledgebased architecture. The semantics of activities, sub-activities and real-time object interaction are taken into consideration. The proposed framework consists of two main modules: the low-level sub-activity recognizer and the high-level activity recognizer. The rst module detects sub-activities (i.e., actions or basic activities) that take input data directly from a depth sensor (Kinect). The main contribution of this thesis tackles the second component of the hybrid system, which lays on top of the previous one, in a superior level of abstraction, and acquires the input data from the rst module's output, and executes ontological inference to provide users, activities and their in uence in the environment, with semantics. This component is thus knowledge-based, and a fuzzy ontology was designed to model the high-level activities. Since activity recognition requires context-awareness and the ability to discriminate among activities in di erent environments, the semantic framework allows for modelling common-sense knowledge in the form of a rule-based system that supports expressions close to natural language in the form of fuzzy linguistic labels. The framework advantages have been evaluated with a challenging and new public dataset, CAD-120, achieving an accuracy of 90.1% and 91.1% respectively for low and high-level activities. This entails an improvement over both, entirely data-driven approaches, and merely ontology-based approaches. As an added value, for the system to be su ciently simple and exible to be managed by non-expert users, and thus, facilitate the transfer of research to industry, a development framework composed by a programming toolbox, a hybrid crisp and fuzzy architecture, and graphical models to represent and con gure human behaviour in Smart Spaces, were developed in order to provide the framework with more usability in the nal application. As a result, human behaviour recognition can help assisting people with special needs such as in healthcare, independent elderly living, in remote rehabilitation monitoring, industrial process guideline control, and many other cases. This thesis shows use cases in these areas.
Resumo:
Resilience is the property of a system to remain trustworthy despite changes. Changes of a different nature, whether due to failures of system components or varying operational conditions, significantly increase the complexity of system development. Therefore, advanced development technologies are required to build robust and flexible system architectures capable of adapting to such changes. Moreover, powerful quantitative techniques are needed to assess the impact of these changes on various system characteristics. Architectural flexibility is achieved by embedding into the system design the mechanisms for identifying changes and reacting on them. Hence a resilient system should have both advanced monitoring and error detection capabilities to recognise changes as well as sophisticated reconfiguration mechanisms to adapt to them. The aim of such reconfiguration is to ensure that the system stays operational, i.e., remains capable of achieving its goals. Design, verification and assessment of the system reconfiguration mechanisms is a challenging and error prone engineering task. In this thesis, we propose and validate a formal framework for development and assessment of resilient systems. Such a framework provides us with the means to specify and verify complex component interactions, model their cooperative behaviour in achieving system goals, and analyse the chosen reconfiguration strategies. Due to the variety of properties to be analysed, such a framework should have an integrated nature. To ensure the system functional correctness, it should rely on formal modelling and verification, while, to assess the impact of changes on such properties as performance and reliability, it should be combined with quantitative analysis. To ensure scalability of the proposed framework, we choose Event-B as the basis for reasoning about functional correctness. Event-B is a statebased formal approach that promotes the correct-by-construction development paradigm and formal verification by theorem proving. Event-B has a mature industrial-strength tool support { the Rodin platform. Proof-based verification as well as the reliance on abstraction and decomposition adopted in Event-B provides the designers with a powerful support for the development of complex systems. Moreover, the top-down system development by refinement allows the developers to explicitly express and verify critical system-level properties. Besides ensuring functional correctness, to achieve resilience we also need to analyse a number of non-functional characteristics, such as reliability and performance. Therefore, in this thesis we also demonstrate how formal development in Event-B can be combined with quantitative analysis. Namely, we experiment with integration of such techniques as probabilistic model checking in PRISM and discrete-event simulation in SimPy with formal development in Event-B. Such an integration allows us to assess how changes and di erent recon guration strategies a ect the overall system resilience. The approach proposed in this thesis is validated by a number of case studies from such areas as robotics, space, healthcare and cloud domain.
Resumo:
The advancement of science and technology makes it clear that no single perspective is any longer sufficient to describe the true nature of any phenomenon. That is why the interdisciplinary research is gaining more attention overtime. An excellent example of this type of research is natural computing which stands on the borderline between biology and computer science. The contribution of research done in natural computing is twofold: on one hand, it sheds light into how nature works and how it processes information and, on the other hand, it provides some guidelines on how to design bio-inspired technologies. The first direction in this thesis focuses on a nature-inspired process called gene assembly in ciliates. The second one studies reaction systems, as a modeling framework with its rationale built upon the biochemical interactions happening within a cell. The process of gene assembly in ciliates has attracted a lot of attention as a research topic in the past 15 years. Two main modelling frameworks have been initially proposed in the end of 1990s to capture ciliates’ gene assembly process, namely the intermolecular model and the intramolecular model. They were followed by other model proposals such as templatebased assembly and DNA rearrangement pathways recombination models. In this thesis we are interested in a variation of the intramolecular model called simple gene assembly model, which focuses on the simplest possible folds in the assembly process. We propose a new framework called directed overlap-inclusion (DOI) graphs to overcome the limitations that previously introduced models faced in capturing all the combinatorial details of the simple gene assembly process. We investigate a number of combinatorial properties of these graphs, including a necessary property in terms of forbidden induced subgraphs. We also introduce DOI graph-based rewriting rules that capture all the operations of the simple gene assembly model and prove that they are equivalent to the string-based formalization of the model. Reaction systems (RS) is another nature-inspired modeling framework that is studied in this thesis. Reaction systems’ rationale is based upon two main regulation mechanisms, facilitation and inhibition, which control the interactions between biochemical reactions. Reaction systems is a complementary modeling framework to traditional quantitative frameworks, focusing on explicit cause-effect relationships between reactions. The explicit formulation of facilitation and inhibition mechanisms behind reactions, as well as the focus on interactions between reactions (rather than dynamics of concentrations) makes their applicability potentially wide and useful beyond biological case studies. In this thesis, we construct a reaction system model corresponding to the heat shock response mechanism based on a novel concept of dominance graph that captures the competition on resources in the ODE model. We also introduce for RS various concepts inspired by biology, e.g., mass conservation, steady state, periodicity, etc., to do model checking of the reaction systems based models. We prove that the complexity of the decision problems related to these properties varies from P to NP- and coNP-complete to PSPACE-complete. We further focus on the mass conservation relation in an RS and introduce the conservation dependency graph to capture the relation between the species and also propose an algorithm to list the conserved sets of a given reaction system.
Resumo:
Human beings have always strived to preserve their memories and spread their ideas. In the beginning this was always done through human interpretations, such as telling stories and creating sculptures. Later, technological progress made it possible to create a recording of a phenomenon; first as an analogue recording onto a physical object, and later digitally, as a sequence of bits to be interpreted by a computer. By the end of the 20th century technological advances had made it feasible to distribute media content over a computer network instead of on physical objects, thus enabling the concept of digital media distribution. Many digital media distribution systems already exist, and their continued, and in many cases increasing, usage is an indicator for the high interest in their future enhancements and enriching. By looking at these digital media distribution systems, we have identified three main areas of possible improvement: network structure and coordination, transport of content over the network, and the encoding used for the content. In this thesis, our aim is to show that improvements in performance, efficiency and availability can be done in conjunction with improvements in software quality and reliability through the use of formal methods: mathematical approaches to reasoning about software so that we can prove its correctness, together with the desirable properties. We envision a complete media distribution system based on a distributed architecture, such as peer-to-peer networking, in which different parts of the system have been formally modelled and verified. Starting with the network itself, we show how it can be formally constructed and modularised in the Event-B formalism, such that we can separate the modelling of one node from the modelling of the network itself. We also show how the piece selection algorithm in the BitTorrent peer-to-peer transfer protocol can be adapted for on-demand media streaming, and how this can be modelled in Event-B. Furthermore, we show how modelling one peer in Event-B can give results similar to simulating an entire network of peers. Going further, we introduce a formal specification language for content transfer algorithms, and show that having such a language can make these algorithms easier to understand. We also show how generating Event-B code from this language can result in less complexity compared to creating the models from written specifications. We also consider the decoding part of a media distribution system by showing how video decoding can be done in parallel. This is based on formally defined dependencies between frames and blocks in a video sequence; we have shown that also this step can be performed in a way that is mathematically proven correct. Our modelling and proving in this thesis is, in its majority, tool-based. This provides a demonstration of the advance of formal methods as well as their increased reliability, and thus, advocates for their more wide-spread usage in the future.
Resumo:
The accelerating adoption of electrical technologies in vehicles over the recent years has led to an increase in the research on electrochemical energy storage systems, which are among the key elements in these technologies. The application of electrochemical energy storage systems for instance in hybrid electrical vehicles (HEVs) or hybrid mobile working machines allows tolerating high power peaks, leading to an opportunity to downsize the internal combustion engine and reduce fuel consumption, and therefore, CO2 and other emissions. Further, the application of electrochemical energy storage systems provides an option of kinetic and potential energy recuperation. Presently, the lithium-ion (Li-ion) battery is considered the most suitable electrochemical energy storage type in HEVs and hybrid mobile working machines. However, the intensive operating cycle produces high heat losses in the Li-ion battery, which increase its operating temperature. The Li-ion battery operation at high temperatures accelerates the ageing of the battery, and in the worst case, may lead to a thermal runaway and fire. Therefore, an appropriate Li-ion battery cooling system should be provided for the temperature control in applications such as HEVs and mobile working machines. In this doctoral dissertation, methods are presented to set up a thermal model of a single Li-ion cell and a more complex battery module, which can be used if full information about the battery chemistry is not available. In addition, a non-destructive method is developed for the cell thermal characterization, which allows to measure the thermal parameters at different states of charge and in different points of cell surface. The proposed models and the cell thermal characterization method have been verified by experimental measurements. The minimization of high thermal non-uniformity, which was detected in the pouch cell during its operation with a high C-rate current, was analysed by applying a simplified pouch cell 3D thermal model. In the analysis, heat pipes were incorporated into the pouch cell cooling system, and an optimization algorithm was generated for the estimation of the optimalplacement of heat pipes in the pouch cell cooling system. An analysis of the application of heat pipes to the pouch cell cooling system shows that heat pipes significantly decrease the temperature non-uniformity on the cell surface, and therefore, heat pipes were recommended for the enhancement of the pouch cell cooling system.