37 resultados para myosin light chains
Resumo:
Supply chains are becoming increasingly dependent on information ex-change in today’s world, and any disruption can cause severe repercus-sions to the flow of materials in the chain. The speed, accuracy and amount of information are key factors. The aim in this thesis is to address a gap in the research by focusing on information exchange and the risks related to it in a multimodal wood supply chain operating between the Baltic States and Finland. The study involved interviewing people engaged in logistics management in the supply chain in question. The main risk the interviewees identified arose from the sea logistics system, which held a lot of different kinds of information. The threat of breakdown in the Internet connection was also found to hinder the operations significantly. A vulnerability analysis was carried out in order to identify the main actors and channels of infor-mation flow in the supply chain. The analysis revealed that the most important and therefore most vulnerable information-exchange channels were those linking the terminal superintendent, the operative managers and the mill managers. The study gives a holistic picture of the investigated supply chain. Information-exchange-related risks varied greatly. One of the most frequently mentioned was the risk of information inaccuracy, which was usually due to the fact that those in charge of the various functions did not fully understand the consequences for the entire chain.
Resumo:
More discussion is required on how and which types of biomass should be used to achieve a significant reduction in the carbon load released into the atmosphere in the short term. The energy sector is one of the largest greenhouse gas (GHG) emitters and thus its role in climate change mitigation is important. Replacing fossil fuels with biomass has been a simple way to reduce carbon emissions because the carbon bonded to biomass is considered as carbon neutral. With this in mind, this thesis has the following objectives: (1) to study the significance of the different GHG emission sources related to energy production from peat and biomass, (2) to explore opportunities to develop more climate friendly biomass energy options and (3) to discuss the importance of biogenic emissions of biomass systems. The discussion on biogenic carbon and other GHG emissions comprises four case studies of which two consider peat utilization, one forest biomass and one cultivated biomasses. Various different biomass types (peat, pine logs and forest residues, palm oil, rapeseed oil and jatropha oil) are used as examples to demonstrate the importance of biogenic carbon to life cycle GHG emissions. The biogenic carbon emissions of biomass are defined as the difference in the carbon stock between the utilization and the non-utilization scenarios of biomass. Forestry-drained peatlands were studied by using the high emission values of the peatland types in question to discuss the emission reduction potential of the peatlands. The results are presented in terms of global warming potential (GWP) values. Based on the results, the climate impact of the peat production can be reduced by selecting high-emission-level peatlands for peat production. The comparison of the two different types of forest biomass in integrated ethanol production in pulp mill shows that the type of forest biomass impacts the biogenic carbon emissions of biofuel production. The assessment of cultivated biomasses demonstrates that several selections made in the production chain significantly affect the GHG emissions of biofuels. The emissions caused by biofuel can exceed the emissions from fossil-based fuels in the short term if biomass is in part consumed in the process itself and does not end up in the final product. Including biogenic carbon and other land use carbon emissions into the carbon footprint calculations of biofuel reveals the importance of the time frame and of the efficiency of biomass carbon content utilization. As regards the climate impact of biomass energy use, the net impact on carbon stocks (in organic matter of soils and biomass), compared to the impact of the replaced energy source, is the key issue. Promoting renewable biomass regardless of biogenic GHG emissions can increase GHG emissions in the short term and also possibly in the long term.
Resumo:
Inorganic-organic sol-gel hybrid coatings can be used for improving and modifying properties of wood-based materials. By selecting a proper precursor, wood can be made water repellent, decay-, moisture- or UV-resistant. However, to control the barrier properties of sol-gel coatings on wood substrates against moisture uptake and weathering, an understanding of the surface morphology and chemistry of the deposited sol-gel coatings on wood substrates is needed. Mechanical pulp is used in production of wood-containing printing papers. The physical and chemical fiber surface characteristics, as created in the chosen mechanical pulp manufacturing process, play a key role in controlling the properties of the end-use product. A detailed understanding of how process parameters influence fiber surfaces can help improving cost-effectiveness of pulp and paper production. The current work focuses on physico-chemical characterization of modified wood-based materials with surface sensitive analytical tools. The overall objectives were, through advanced microscopy and chemical analysis techniques, (i) to collect versatile information about the surface structures of Norway spruce thermomechanical pulp fiber walls and understand how they are influenced by the selected chemical treatments, and (ii) to clarify the effect of various sol-gel coatings on surface structural and chemical properties of wood-based substrates. A special emphasis was on understanding the effect of sol-gel coatings on the water repellency of modified wood and paper surfaces. In the first part of the work, effects of chemical treatment on micro- and nano-scale surface structure of 1st stage TMP latewood fibers from Norway spruce were investigated. The chemicals applied were buffered sodium oxalate and hydrochloric acid. The outer and the inner fiber wall layers of the untreated and chemically treated fibers were separately analyzed by light microscopy, atomic force microscopy and field-emission scanning electron microscopy. The selected characterization methods enabled the demonstration of the effect of different treatments on the fiber surface structure, both visually and quantitatively. The outer fiber wall areas appeared as intact bands surrounding the fiber and they were clearly rougher than areas of exposed inner fiber wall. The roughness of the outer fiber wall areas increased most in the sodium oxalate treatment. The results indicated formation of more surface pores on the exposed inner fiber wall areas than on the corresponding outer fiber wall areas as a result of the chemical treatments. The hydrochloric acid treatment seemed to increase the surface porosity of the inner wall areas. In the second part of the work, three silane-based sol-gel hybrid coatings were selected in order to improve moisture resistance of wood and paper substrates. The coatings differed from each other in terms of having different alkyl (CH3–, CH3-(CH2)7–) and fluorocarbon (CF3–) chains attached to the trialkoxysilane sol-gel precursor. The sol-gel coatings were deposited by a wet coating method, i.e. spraying or spreading by brush. The effect of solgel coatings on surface structural and chemical properties of wood-based substrates was studied by using advanced surface analyzing tools: atomic force microscopy, X-ray photoelectron spectroscopy and time-of-flight secondary ion spectroscopy. The results show that the applied sol-gel coatings, deposited as thin films or particulate coatings, have different effects on surface characteristics of wood and wood-based materials. The coating which has a long hydrocarbon chain (CH3-(CH2)7–) attached to the silane backbone (octyltriethoxysilane) produced the highest hydrophobicity for wood and wood-based materials.
Resumo:
The aim of this thesis was to identify the best grease removal technique with the application of low power of UV light to TiO2 coated grease filters. The treatment with various power series of ozone generating and ozone free lamps to normal grease filters and TiO2 coated grease filters were examined and the obtained results are compared to each other in this paper. The effect of ozone reaction was observed and compared with the effect of TiO2. The experiments were solely based on the photo oxidation and photo catalytic oxidation reactions. TiO2 is a green catalyst used in the photocatalytic reaction. Sunflower oil was used for grease production and tetracholoroethylene as a solvent. Grease samples were collected from the ventilation duct connected to the cooking hood system. Sample extraction was done in ultrasonic bath with the principle of sonication. The sample analysis was done by FTIR machine. The result determining the concentration of grease was the quantification of saturated C-H bonds in the chosen peak group of the spectrum. A very low power of UVC light functions perfectly with the Titanium dioxide. The experimental results have shown the combined treatment of titanium dioxide and UV light is an effective method in grease removal process. The photocatalytic reaction with titanium dioxide is better than photo oxidation reaction with ozone treatment. Photocatalytic reaction is environmentally friendly, energy efficient and economical.
Resumo:
The objective of this Master’s thesis is to create a calculation model for working capital management in value chains. The study has been executed using literature review and constructive research methods. Constructive research methods were mainly modeling. The theory in this thesis is founded in research articles and management literature. The model is developed for students and researchers. They can use the model for working capital management and comparing firms to each other. The model can also be used to cash management. The model tells who benefits and who suffers most in the value chain. Companies and value chains cash flows can be seen. By using the model can be seen are the set targets really achieved. The amount of operational working capital can be observed. The model enables user to simulate the amount of working capital. The created model is based on cash conversion cycle, return on investment and cash flow forecasting. The model is tested with carefully considered figures which seem to be though realistic. The modeled value chain is literally a chain. Implementing this model requires from the user that he/she have some kind of understanding about working capital management and some figures from balance sheet and income statement. By using this model users can improve their knowledge about working capital management in value chains.
Resumo:
Kansalliskirjaston ONKI-projektin ylläpitämä Finto-palvelu käyttää projektissa kehitettävää Skosmos-ohjelmaa (entinen ONKI Light). Skosmos on työkalu kontrolloitujen sanastojen, kuten asiasanastojen ja asiasanastotyyppisesti käytettävien ontologioiden julkaisuun. Työkalu tarjoaa selailu- ja hakukäyttöliittymän sanastoille sekä avoimet rajapinnat koneellista käyttöä varten. Käyttöliittymä on monikielinen sisältäen tällä hetkellä suomen-, ruotsin- sekä englanninkieliset käyttöliittymäversiot.
Skosmoksen edeltäjälle ONKI Lightille on tehty ONKI-projektissa jo aikaisempi käytettävyystesti, jonka raportti on luettavissa Doriassa.
Käytettävyystestien perusteella vaikuttaisi siltä, että ontologian selaamiseen asiasanoituksessa vaikuttaisi ainakin käyttäjän käyttämä järjestelmä, asiasanoitukseen käytettävä aika, asiasanoitustottumukset ja -kokemus sekä sanaston tuttuus. Jos aikaa ei ole juurikaan varattu asiasanoitukselle, ei käsitteitä juurikaan selailla, vaikka muuten tuki ontologioiden hyödyntämiselle olisi olemassa. Myöskään sanastoa ei juurikaan selailla, mikäli aihe ja sanasto ovat tuttuja, jolloin asiasanojen merkitykset ovat etukäteen tiedossa.
Resumo:
Nowadays the Western companies are considered responsible for the social and environmental issues in their whole supply chains. To influence the practices of their suppliers the Western companies have created suppliers codes of conduct (SCCs) which express their requirements. Suppliers’ compliance with the SCCs is checked through audits. The purpose of this thesis is to analyze SCCs as a means for Western companies to ensure socially and environmentally responsible actions in their global supply chains, and the sub-objectives are to find out 1) how well do the SCCs and their auditing work at suppliers’ production sites and 2) how can possible problems related to SCCs and their auditing be solved. This is a qualitative research carried out in the form of a case study with two case companies. In this study both primary and secondary data is used. The primary data is collected in the form of interviews of the case company representatives and three external experts. Based on a theoretical framework of previous research in the fields of corporate social responsibility and supply chain management, a model with eleven factors, which influence the success of SCC implementation and the auditing of SCC –implementation, is drafted. Also several different best-practices to help to solve and avoid possible problems related to SCC -implementation and auditing have been identified from previous research. Based on the findings of this study the theoretical model has been updated adding two new influential factors. It seems that how well the SCC and its auditing work at suppliers’ production sites depends on the joint effect of thirteen influential factors: buyer’s purchasing policy, supplier’s motivation, buyer’s commitment, the solving of agency problems, the contents of the SCC, supplier’s role and the buyer-supplier –relationship, complexity of supply chain, the limitations of the smaller buyers, cooperation through a business association or multi-stakeholder system, the role of supplier’s employees, SCC –related communication and supplier’s understanding, cheating in audits and the auditors. The possible problems related to SCCs and their auditing can be solved by adopting best-practices. Nine of the theoretical best-practices stand out from the findings of this study: 1) two-way communication and collecting feedback from suppliers, 2) the philosophy of continuous improvement, 3) long-term business relationships with the supplier, 4) informing the supplier about the advantages of SCC –compliance, 5) rewarding code-compliant suppliers, 6) building collaborative, good buyer-supplier relationships, 7) supporting and advising the supplier, 8) joining a business association or multi-stakeholder system and 9) interviewing supplier’s employees as a part of the audits.
Resumo:
Tool center point calibration is a known problem in industrial robotics. The major focus of academic research is to enhance the accuracy and repeatability of next generation robots. However, operators of currently available robots are working within the limits of the robot´s repeatability and require calibration methods suitable for these basic applications. This study was conducted in association with Stresstech Oy, which provides solutions for manufacturing quality control. Their sensor, based on the Barkhausen noise effect, requires accurate positioning. The accuracy requirement admits a tool center point calibration problem if measurements are executed with an industrial robot. Multiple possibilities are available in the market for automatic tool center point calibration. Manufacturers provide customized calibrators to most robot types and tools. With the handmade sensors and multiple robot types that Stresstech uses, this would require great deal of labor. This thesis introduces a calibration method that is suitable for all robots which have two digital input ports free. It functions with the traditional method of using a light barrier to detect the tool in the robot coordinate system. However, this method utilizes two parallel light barriers to simultaneously measure and detect the center axis of the tool. Rotations about two axes are defined with the center axis. The last rotation about the Z-axis is calculated for tools that have different width of X- and Y-axes. The results indicate that this method is suitable for calibrating the geometric tool center point of a Barkhausen noise sensor. In the repeatability tests, a standard deviation inside robot repeatability was acquired. The Barkhausen noise signal was also evaluated after recalibration and the results indicate correct calibration. However, future studies should be conducted using a more accurate manipulator, since the method employs the robot itself as a measuring device.
Resumo:
Suurelle yleisölle lisäävä valmistustekniikka eli ns. 3D-tulostustekniikka näyttäytyy lehtien otsikoissa ja artikkeleissa esiin pulpahtavana ”muotiaiheena”, mutta sekä muovien 3D-tulostustekniikka että metallienkin vastaava valmistustekniikka on ollut olemassa maailmalla ja Suomessa 80-luvun puolivälistä alkaen. Yhdysvalloissa ja Saksassa tekniikkaa käytetään valmistavassa teollisuudessa toiminnallisten osien tuotannossa. Esimerkiksi lentokoneen suihkumoottorien osia ja lääketieteellisiä välineitä tehdään metallijauheesta lisäävän valmistuksen avulla. Itse asiassa eräs menetelmä metalliesineiden valmistamiseksi lasersäteen avulla keksittiin Suomessa ja sitä myös kehiteltiin täällä, mutta teollisuudenala lähti aikanaan nousuun Saksassa. Lisäävä valmistus on tällä hetkellä maailmanlaajuisesti eräs kiinnostavista tuotantotekniikoista, jonka uskotaan muuttavan monia asioita tuotteiden suunnittelussa, toiminnoissa ja valmistuksessa. Tämä tekniikka ei kiinnosta pelkästään valmistavaa teollisuutta, vaan tietotekniikan, lääketieteen, koruvalmistuksen ja muotoilun osaajat sekä uusien liiketoimintamallien kehittäjät ja logistiikka operaattorit ovat teknologiasta kiinnostuneita. Suomelle 3D-tulostustekniikka on suuri mahdollisuus, sillä maassamme on vahva teollinen tieto- ja viestintätekniikkaosaaminen sekä lisäksi olemme maassamme erikoistuneet varsin vaativien teollisiin laitteiden valmistukseen. Eräät suurimmista mahdollisuuksista tällä tekniikalla ovat toimitusketjuihin liittyvät muutokset. Uutta on, että pienetkin yritykset ja organisaatiot voivat soveltaa tätä tekniikkaa valmistuksessa ja jopa kehitellä täysin uusia tuotteita. On myös arvioitu, että lisäävän valmistuksen merkitys valmistustapoihin ja toimitusketjuihin voi olla suurempi kuin koskaan aikaisemmin minkään teknologisen uudistuksen kohdalla. Lisäävästä valmistuksesta usein puhutaankin kolmantena teollisena vallankumouksena juuri tämän takia. 3D-tulostuksen kustannuksia tarkasteltaessa on tärkeätä huomata että vain sulatetun jauheen määrä ratkaisee, ei käytettävän geometrian monimutkaisuus. Tämä erottaa perinteisen ja lisäävän valmistuksen toisistaan. Perinteisesti kappaleen keventäminen on maksanut ”ylimääräistä”, kun taas lisäävässä valmistuksessa kappaleen keveys on jopa kustannusta alentava tekijä. Valmistettavan kappaleen korkeus on yksi kriittisimpiä kustannuksiin vaikuttavia tekijöitä. Tämän vuoksi useamman kappaleen valmistus yhdellä kertaa parantaa kannattavuutta huomattavasti. Samalla kertaa voi ja itse asiassa kannattaakin valmistaa keskenään erilaisia kappaleita. Perinteiset valmistustavat sen sijaan ovat nykyajan vaatimuksille liian hitaita; ne joustavat huonosti, kun kyseessä on pienet, asiakaslähtöiset erät. Trendi on globaalisti kohden yksilöllisiä asiakaslähtöisiä tuotteita, jolloin myös valmistustekniikoiden on oltava joustavia pysyäkseen näiden vaatimusten perässä. Lisäävä valmistus sopii erityisesti hyvin piensarjatuotantoon. Suuremmissa valmistuserissä kuitenkin perinteiset tekniikat ovat kustannustehokkaampia.
Resumo:
The main aim of this thesis is to study the effect of pigments on the weathering properties of wood-polypropylene composites (WPC). The studied properties are color change, water absorption, thickness swelling and Charpy impact strength. The impact of weathering and UV exposure on WPCs was studied by using pigments and minerals as protective agents. The study shows that the pigments and/or mineral fillers can be used to improve the weathering properties of WPCs. The effect of pigments was found to vary with the type of pigment and the method of weathering. The black pigment, an inorganic carbon black master-batch, was found to be the most effective one in reduction of the discoloration of WPCs. By preventing discoloration, and further reducing the degradation of the surface of the WPC, the pigments were found to reduce the decrease in the impact strength after weathering. As well as UV protection, the moisture resistance is a significant factor affecting the durability of WPCs. The addition of mineral fillers was found to improve the moisture-related properties, such as water absorption and thickness swelling, of WPC significantly. According to the findings, addition of pigments and mineral fillers to wood-polypropylene composites appears to be beneficial: color stability and moisture resistance can be enhanced especially in outdoor weathering. The combined effect of black pigment (carbon black master-batch) and wollastonite as a mineral filler was found to bring about the most effective properties against weathering.
Resumo:
Life cycle assessment (LCA) is one of the most established quantitative tools for environmental impact assessment of products. To be able to provide support to environmentally-aware decision makers on environmental impacts of biomass value-chains, the scope of LCA methodology needs to be augmented to cover landuse related environmental impacts. This dissertation focuses on analysing and discussing potential impact assessment methods, conceptual models and environmental indicators that have been proposed to be implemented into the LCA framework for impacts of land use. The applicability of proposed indicators and impact assessment frameworks is tested from practitioners' perspective, especially focusing on forest biomass value chains. The impacts of land use on biodiversity, resource depletion, climate change and other ecosystem services is analysed and discussed and the interplay in between value choices in LCA modelling and the decision-making situations to be supported is critically discussed. It was found out that land use impact indicators are necessary in LCA in highlighting differences in impacts from distinct land use classes. However, many open questions remain on certainty of highlighting actual impacts of land use, especially regarding impacts of managed forest land use on biodiversity and ecosystem services such as water regulation and purification. The climate impact of energy use of boreal stemwood was found to be higher in the short term and lower in the long-term in comparison with fossil fuels that emit identical amount of CO2 in combustion, due to changes implied to forest C stocks. The climate impacts of energy use of boreal stemwood were found to be higher than the previous estimates suggest on forest residues and stumps. The product lifetime was found to have much higher influence on the climate impacts of woodbased value chains than the origin of stemwood either from thinnings or final fellings. Climate neutrality seems to be likely only in the case when almost all the carbon of harvested wood is stored in long-lived wooden products. In the current form, the land use impacts cannot be modelled with a high degree of certainty nor communicated with adequate level of clarity to decision makers. The academia needs to keep on improving the modelling framework, and more importantly, clearly communicate to decision-makers the limited certainty on whether land-use intensive activities can help in meeting the strict mitigation targets we are globally facing.
Resumo:
Short sea shipping is an important part of the European economy and an alternative to road transport of goods in Europe. It represents an intermodal transport combination of sea and land on a Door-to-Door basis, and it aims to develop more sustainable transport network with the least negative impacts by the transport modes. This Master’s thesis addresses the development of short sea shipping transportation chains at Helsinki-Tallinn route. The Master´s thesis explores the development of short sea shipping at Helsinki-Tallinn route by analyzing the shipping costs per unit transported by different ship types and sizes between port of Helsinki-Vuosaari harbour and port of Tallinn-Muuga harbour, and examining the possibility of Ro-Ro traffic as well. The study is qualitative-quantitative method and it is based on a case study, data is collected from secondary and primary sources, and mixed methods analysis is used to implement the interviews and observations results with the databases analysis. In the thesis factors affecting on short sea shipping are explored and analyzed, also the possibility of Ro-Ro shipping is examined, by comparing the shipping cost and the environmental impact of different ships like container ships, Ropax, and CONRO ships. The finding of this research shows the importance of time at port and utilization as a shipping cost determinants, the relationship between ship type and costing, and the possibility of Ro-Ro shipping.
Resumo:
This thesis studies the impact of the latest Russian crisis on global markets, and especially Central and Eastern Europe. The results are compared to other shocks and crises over the last twenty years to see how significant they have been. The cointegration process of Central and Eastern European financial markets is also reviewed and updated. Using three separate conditional correlation GARCH models, the latest crisis is not found to have initiated similar surges in conditional correlations to previous crises over the last two decades. Market cointegration for Central and Eastern Europe is found to have stalled somewhat after initial correlation increases post EU accession.